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The magnetic Dirac operator in dimension two

We consider in L2(R2)2 the Dirac operator with a homogeneous magnetic field
B = (0,0, b). This operator is defined by

D0 := σ · (−i∇−A) +mσ3

where σ := (σ1,σ2), σ3 are the Pauli matrices, A := (A1,A2) = b(−x2
2 ,

x1
2 ).

More explicitly, by defining

a := (−i∂x1 −A1) + i(−i∂x2 −A2) =−2ie−b|x|
2/4∂ eb|x|

2/4

a∗ := (−i∂x1 −A1)− i(−i∂x2 −A2) =−2ieb|x|
2/4∂ e−b|x|

2/4

then
D0 =

(
m a∗

a −m

)
.

The operator D0 is essentially self adjoint in C∞0 (R2)2.



Relation with the Landau Hamiltonian

Define now the Landau Hamiltonian

HL := (−i∇−A)2.

It is easy to see that

D2
0 =

(
HL− b+m2 0

0 HL+ b+m2

)
The spectrum of HL is given by the Landau levels Λn = b(2n+ 1), n ∈ Z+.
Moreover, by using the Foldy-Wouthuysen unitary transformation UFW

D0 = U∗FW

( √
HL− b+m2 0

0 −
√
HL+ b+m2

)
UFW .

Then, the spectrum of D0 is made up of eigenvalues of infinite multiplicities, the
so-called Landau-Dirac Levels

µq :=

{√
2bq+m2, q ∈ {0,1,2, ...}

−
√

2b|q|+m2, q ∈ {−1,−2, ...}.



Orthogonal projections

We have the relations a∗a=HL−b and aa∗ = a∗a+2b=HL+b, for any n ∈ Z+, then

Ker(HL−Λn) = (a∗)nKer(a).

Denote by pn be the orthogonal projection onto Ker(HL−Λn) (n ∈ Z+)

Similarly, denote by Pq the orthogonal projection onto Ker(D0−µq) (q ∈ Z).

It is not dificult to see that

Pq =


U∗FW

(
pq 0
0 0

)
UFW , q ∈ {0,1,2, ...}

U∗FW

(
0 0
0 p|q|

)
UFW , q ∈ {−1,−2, ...}.



Perturbation and eigenvalue counting function

Let V1,V2 and W be measurable decaying functions in R2 and take

V :=
(
V1 W
W V2

)
.

(If W =−Ã1− iÃ2, and b̃= ∂x1Ã2−∂x2Ã1, then the total magnetic field is b+ b̃).

This is a relatively compact perturbation of D0, then the perturbed operator

DV :=D0 +V

satisfies:
σess(DV ) = σess(D0) = {µq, q ∈ Z}.

Denote by ET (ω) the spectral projection of the self-adjoint operator T associated
with the Borel set ω.

For q ∈ Z set

N+
q (λ) := TrED0+V (µq +λ,α), N−q (λ) := TrED0+V (α,µq−λ),

where α is a fixed number in (µq,µq+1) and (µq−1,µq), respectively.
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Some history and methods for related results

On the asymptotic distribution of eigenvalues for the magnetic Schrödinger
operator HL+v:

Raikov 1990, Ivrii 90’s: v moderately decaying

v(x)∼ |x|−γ =⇒Nn(λ)∼ |λ|−2/γ

An important ingredient: The Toeplitz operator pnvpn.
Raikov-Warzel 2002, Melgaard-Rozenblum 2003: v fast decaying

v(x) withcompactsupport =⇒Nn(λ)∼ | lnλ|
ln | lnλ|

Filonov-Pushnitski 06: improvement

Nn(λ) = | lnλ|
ln | lnλ| +

| lnλ| ln(ln | lnλ|)
(ln | lnλ|)2 + | lnλ|

(ln | lnλ|)2
(
C+o(1)

)
Both results need v ≥ C > 0.

Problems with fast decaying perturbations
Symbols of variable sign



Pushnitski, Rozenblum 2007, Persson 2009, Goffeng, Kachmar,
Persson-Sundqvist 2016: obtacles
Pushnitski, Rozenblum, 2011, results for some potentials with not fixed sign
Lungenstrass, Raikov 2016, metric perturbations
Cárdenas, Raikov, Tejeda 2020: non-local perturbations.
Behrndt, Exner, Holzmann, Lotoreichik 2020: δ-potentials on curves

In almost all these cases there is a condition of positivity on the perturbation.

On the asymptotic distribution of eigenvalues for magnetic Dirac
operators

Ivrii 90’s: V power-like decaying
Melgaard-Rozenblum 2003: V = vI2 ≥ 0 compactly suported

We are interested inV ’s of compact support with no fixed sign
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First results for N +
q : Index of a pair of projections

For A and B self adjoint define

Ξ(λ;B,A) =dimKer
(
EA(−∞,λ)−EB(−∞,λ)− I

)
−dimKer

(
EA(−∞,λ)−EB(−∞,λ) + I

)

=dim(RanEA(−∞,λ)∩RanEB [λ,∞))
−dim(RanEB(−∞,λ)∩RanEA[λ,∞)).

Lemma
Let λ /∈ σess(A). If (B−A) is A−compact, then EB(−∞,λ)−EA(−∞,λ) is compact

Lemma

[λ1,λ2]⊂ R\σess(A)⇒ Ξ(λ1;B,A)−Ξ(λ2;B,A) =N ([λ1,λ2);B)−N ([λ1,λ2);A)

Lemma

If M1 ≥M2 then Ξ(λ;A,A+M1)≥ Ξ(λ;A,A+M2).
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Diagonalization trick
For a given ε > 0 define the potentials

V ±ε :=
(
V1± ε(|V1|+ |W |) W ∗

W V2± ε(|V2|+ |W |)

)
PqV −ε Pq +P⊥q (V − ε−1|V |)P⊥q ≤ V ≤ PqV +

ε Pq +P⊥q (V + ε−1|V |)P⊥q

Proposition

n+(λ,PqV −ε Pq) +O(1)≤N+
q (λ)≤ n+(λ,PqV +

ε Pq) +O(1)

For q ≥ 0 set

T0(V ) :=p0V1p0;

Tq(V ) :=tqpqV1pq + 1− tq
2bq pqa

∗V2apq + 1
2µq

pq(a∗W +W ∗a)pq

Lemma

PqV Pq = U∗FW

(
Tq(V ) 0

0 0

)
UFW
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Main result I: V1 non negative

Theorem (1)
Let Ω be a bounded open set with Lipschitz boundary in R2. Assume
V1,V2,W ∈ L∞(R2) with support in Ω and V1 ≥ C > 0. Then for any q ∈ Z

N+
q (λ) = | lnλ|

ln | lnλ| +
| lnλ| ln(ln | lnλ|)

(ln | lnλ|)2 + | lnλ|
(ln | lnλ|)2

(
C(Ω) +o(1)

)
λ↘ 0.

Here
C(Ω) := 1+ ln

(
b

2 Cap(Ω)2
)
,

and Cap(Ω) coincides with the transfinite diameter, i.e., is equal to limn→∞ δn(Ω)
where

δn(Ω) := max
z1,··· ,zn∈E

( ∏
1≤i<j≤n

|zi−zj |
) 2

n(n−1)
.
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Some ideas of the proof
The space pnL2(R2) is isometric with the Fock space F2, i.e., the Hilbert space
consisting of all entire functions f such that∫

C
|f(z)|2e−b|z|

2/4dm(z)<∞.

Introduce in F2 the quadratic forms

rq(v)[f ] :=
∫
C
|(a∗)qe−b|z|

2/4f(z)|2v(z)dm(z).

sn(W )[f ] = 2Re
∫
C

(a∗)nf(z)(a∗)n−1f(z)e−b|z|
2/2W (z)dm(z).

Then Tq(V ) is unitarily equivalent to the operator in F2 given by the quadratic form

rq(V1) + rq−1(V2) +sq(W )

Lemma
There exists a subspace of finite codimension in F2 where

rq(V1) + rq−1(V2) +sq(W )≥ Cr0(χΩ)
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Consider the case q = 1. From the Cauchy-Schwarz inequality we have the estimate,
for any δ > 0:

|s1(W )[f ]| ≤ δa1(|W |)[f ] + 1
δ
a0(|W |)[f ].

After,

r1(V1)[f ] + r0(V2)[f ]

=
∫
C
|(2∂− bz)f(z)|2e−b|z|

2/4V1(z)dm(z) +
∫
C
|f(z)|2e−b|z|

2/4V2(z)dm(z)

Since H1(Ω) is compactly embedded in L2(Ω), for any γ > 0 there exists a subspace
of finite codimension in H1(Ω) such that ‖f‖L2(Ω) ≤ γ‖∇f‖L2(Ω).

r1(V1)[f ] + r0(V2)[f ]≥C
(
‖∂f‖L2(Ω)−‖f‖L2(Ω)

)2
≥Cγ‖f‖2L2(Ω)

Then
r1(V1) + r0(V2) +s1(W )≥ Cr0(χΩ)

Now we follow the same analysis of Filonov-Pushnitski’06 using orthogonal
polynomials.
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Main Result 2: The negative part is “encircled” by the positive part

We say that a compact set K is encircled by an open set Ω if there exists a Jordan
curve Γ⊂ Ω such that K is contained in the interior part of Γ.

Theorem
Let V ∈ L∞(R2,R2). Suppose there exist K ⊂ R2 a compact set, and Ω1,Ω2 open
bounded subsets of R2 such that K is encircled by Ω1∪Ω2. Further, assume

V1 ≥ C1χΩ1 −CχK ; V2 ≥ C2χΩ2 −CχK ; |W | ≤ C3χΩ1w+CχK ,

for some constants C,C1,C2,C3 ≥ 0.
Then the asymptotics of the previous theorem holds.



Gracias por su atención!


