Crossings of classical Trajectories and Resonances for Schrödinger systems With S. Fujiié (kyoto) and k. Higuchi (Ehime)

Consider the AD 2x2 matrix Schrödinger operator $P = P(h) = \begin{pmatrix} P_{n}(h) & hw \\ hw^{*} & P_{2}(h) \end{pmatrix} \text{ in } L^{2}(R; \mathbb{C}^{2})$ where $P_{j}(h) = (hD_{x})^{2} + V_{j}(x) \quad (j = \Lambda \cdot R) \text{ with Smooth } V_{j} \in \mathbb{C}^{2}(R; R)$ and and $W = ro(x) + i r_1(x) h D_x$: Interaction, $r_0, r_n \in C^{\infty}(R; R)$ Here Dx = -: d h>0 is a small parameter (the semiclassical parameter)

$$\frac{(lassical dynamics}{(x,i) = i^{2} + i_{j}(x)}, (x,i) \in T^{*}R \simeq n^{2}, \text{ be the symbol of } F_{j}(n).$$
The classical dynamics is described by
$$H_{P_{i}} = \partial_{i} P_{i} \partial_{x} - \partial_{x} P_{i} \partial_{z} = 2i \partial_{x} - i_{j}(x) \partial_{z}$$
and the classical trajectory is
$$(x(t), 2(t)) = \exp((t H_{P_{i}})(x_{0}), tev2.$$

$$Hamiltonion flow$$
In our AD setting, it coincides with the characteristic set
$$f_{j}(E) := \frac{2}{(x_{i}R) \in N^{2}}; P_{i}(x_{i}i) = E_{j}(E R)$$

$$(onServation law : P_{i}(exp(H_{P_{0}})(x_{i}i)) = P(x_{i}i)$$
for all $(x_{i}i) \in f_{j}(E)$.

The model: Assume
$$V'_{0}(x) \longrightarrow V'_{0}(x) + E R$$
.
 $x \rightarrow \pm \infty$
Fix EOER. We consider the following 2 types of potentials
(A1) V_{1} is a simple well potential at EO:
 $V_{0,x} > E_{0}$ and \exists as Abo s.t. $\frac{V_{0}(x) - E_{0}}{(x - a_{0})(x - b_{0})} > 0$, $\forall x \in R$.

The spectrum of Pr(h) near Eo is discrete consists of Simple h-dependent eigenvalues.

In the semiclassical limit
$$h \rightarrow o^+$$
, these eigenvalues
are approximated by the roots of
 $Cos\left(\frac{A(E)}{2h}\right) = 0$ (Bohr-Sommerfeld quantization
rule (BS)
 $A(E) = \int_{T_A(E)} i dx$: The action along
 $T_A(E)$

(A2)
$$V_2$$
 is a non-tropping potential at Eo:
 V_{2_1} X_2 is a non-tropping potential at Eo:
 V_{2_1} X_2 $(x) - E_0$ y_0 , $\forall x \in w_2$
 V_{2_1} X_2 $(x - C_0)$

Imaginary part of resonances Recipced of Life time of the
(resonance width) = quembran particle
classical objectives of
$$P_n$$
 and P_2 .
Intribue: Particles trapped in Γ_n may change the
trajectory to Γ_2 thanks to the interaction and
escope to infinity.
The probability of this change of brajectory from Γ_n
to Γ_2 should determine the resonance width.
Highen the probability \Rightarrow wider the resonance
width

We are interested in the case $T_A \cap T_2 \neq \phi$. Here we only take a <u>simple model</u>: $E_0 \ge 0$, $V_A(0) = V_2(0) = 0$, $3 \times E_V2$; $V_A(x) = V_2(x) \le E_0 \le 2 = 3 - 2$ Assume that the contact order new of V_A and V_2 at x = 0is finite.

$$IL / Main results$$

$$Set \quad R = R(S_{A}, S_{2}) = [E_{0} - S_{A}, E_{0} + S_{4}] - i[o, S_{2}]$$

$$B_{h} = \{F \in [E_{0} - S_{A}, E_{0} + S_{4}]\} = Set Refice (BS) \}$$

$$Scales = f \frac{S_{41}, S_{2}}{S_{4}} :$$

$$S_{4} = \begin{cases} S = \begin{cases} E_{0} > 0 \\ J \\ Lh^{2n+4} \end{cases} (E_{0} = 0) \end{cases} ; \quad S_{2} = Lh \quad with \quad J > 0 \text{ arbitrarily large}$$

Theorem (A.-Fujité-Higuchi, '23,'24):
There exists a bijective map

$$3_h: B_h \longrightarrow Res(P) \cap R$$

and a non-negotive Smooth function $D(E)_2 D(E,h)$ of
Enear Eo wiformly bounded w.n.t. h>o such that
for any EE Bh
 $[3_h(E) - E] = O((h^{\frac{m+3}{m+1}})]$
 $Im 3_h(E) = -D(E) h^{\frac{m+3}{m+1}} + O(h^{\frac{m+4-E}{m+1}})$
wiformly as $h \rightarrow O^+$, for sine $D \in E < 1$.

The leading term
$$D(E)$$
: We assume for simplicity $(W = r_0(x))$
A) Case $E_0 > 0$ (m=n)
 $D(E) = 2 \prod \left(\frac{m + 2}{m + n}\right)^2 \left(\frac{2(m + n)!}{10 + 1}\right)^{\frac{2}{m + n}} \frac{-\frac{m}{m + n}}{A!(E)} r_0(0)^2 R^2 \sin^2\left(\frac{S(E)}{2h} + \theta\right)$
where $U_n = V_2^{(n)}(0) - V_n^{(n)}(0)$
 $R = \begin{cases} A \quad (m \text{ odd}) \\ los(\frac{\pi}{2(m + 1)}) \quad (m \text{ even}) \end{cases}$; $\theta = \begin{cases} \frac{\pi}{2(m + 1)} sg_n(U_n) \quad (m \text{ odd}) \\ 0 \quad (m \text{ even}) \end{cases}$
 $S(E)$ is the action of the directed cycle S
 $S(E) = \int_{S} 2 dx = 2 \int_{a(E)}^{0} VE - V_1(R) dx + 2 \int_{0}^{C(E)} VE - V_2(R) dx$

2) Case Eo = 0 (m = 2n)
D(E) =
$$\frac{4\pi^2}{J_0} r_0(0)^2 A_n \left(-\frac{q_n^2}{J_0}\gamma\right)^2$$

Jo $q_n^{\frac{2}{2nn!}} A^{1}(E)$

$$\gamma = \frac{E}{h^{\frac{1}{2n+1}}}$$
An is a generalization of the Airy function (An=Ai)
An $(\lambda) = \frac{1}{2\pi} \int_{WZ} \exp\left(i \int_{0}^{\gamma} (\lambda + \tau^{2})^{n} d\tau\right) d\gamma$
 $\overline{V_{0}} = \sqrt{V_{n}^{1}(0) V_{2}^{1}(0)}$, $q_{n} = \frac{|\overline{V_{n}}|}{|n| \sqrt{|T_{0}|}}$.

$$V_{A}(3)V_{2}(3)$$
 () () () ()

III / Main ideas of the proofs
$$L^{2}(R; G^{2})$$

Microboal terminologies: Let $g_{0} \in R^{2}$ and $U \in L^{2}$ with $UUV_{L^{2}} \in A$
i) We say that U is microboally 0 at g_{0} and write $U \equiv 0$ at g_{0}
if \exists a neighborhood $S2$ of g_{0} in R^{2} such that
 $\|TU\|_{L^{2}}(S2) = O(h^{60})$
 $TU(x;R;h) = 2^{N_{2}}(Th)^{-3N_{1}}\int_{R^{2}} e^{(x-y)^{2}/h - (x-y)^{2}/2h} U(y) dy$
 f_{0}
 $TU(x;R;h) = 2^{N_{2}}(Th)^{-3N_{1}}\int_{R^{2}} e^{(x-y)^{2}/h - (x-y)^{2}/2h} U(y) dy$
 f_{0}
 f_{0}

Recall that 1) Any locally normalized solution wto (P_E) N=O is microlocally supported on T_(E) UTZ(E). 2) If W=O at 30 EV a connected component of (TIE) UTIE) / (TIE) nTIE) then W=0 ou 6 propagation of Singularities

*) The Space of microlocal solutions on each connected component
of (TAUTE)
$$(TAUTE)$$
 is one dimensional.
Let $g \in TAUTE$ be a crossing point and Ω a small neighb.
of g .

We construct H WEB solutions f_{A}^{b} , f_{A}^{a} , f_{Z}^{a} , f_{Z}^{a}
to the system $(P-E) W \equiv 0$ on T_{A}^{b} , T_{A}^{a} , S_{Z}^{a} , S_{Z}^{a} .

 $f_{A}^{b} = e^{i P_{A}^{b} (X_{A})}$, $P_{A}^{b} (X) = \pm \int_{0}^{X} \sqrt{E-Y_{A}^{b}(Y_{A})} dY$
 \pm corresponds to if T_{A}^{b} is in $Z \pm 3 > 0$ S.

Theorem (A. Fujilié - Higuchi 23, 24)
For EER and h>o smell,
$$\exists a a a a a matrix T = T(E,h)$$

Such that if a locally normalized solution W solicities
 $(P, E) W = 0$ or J_{i}
 $W = d_{i}^{*} f_{i}^{*} = T(E_{1}h) \begin{pmatrix} d_{n}^{b} \\ d_{2}^{b} \end{pmatrix}$
then
 $\begin{pmatrix} d_{n}^{*} \\ d_{2}^{*} \end{pmatrix} = T(E_{1}h) \begin{pmatrix} d_{n}^{b} \\ d_{2}^{b} \end{pmatrix}$
 $T = Id - i h^{\frac{1}{max}} \begin{pmatrix} 0 & W \\ W & 0 \end{pmatrix} + \theta(h^{\frac{2-E}{max}}), (E_{0}>0, g=g_{1})$
 $i T = Id - i h^{\frac{1}{max}} \begin{pmatrix} 0 & W \\ W & 0 \end{pmatrix} + \theta(h^{\frac{2-E}{max}}), (E_{0}>0, g=g_{2})$
 $i T = Id - i h^{\frac{1}{max}} \begin{pmatrix} 0 & W \\ W & 0 \end{pmatrix} + \theta(h^{\frac{2-E}{max}}), (E_{0}>0, g=g_{2})$
 $i T = Id - i h^{\frac{1}{max}} \begin{pmatrix} 0 & W \\ W & 0 \end{pmatrix} + \theta(h^{\frac{2-E}{max}}), (E_{0}>0, g=g_{2})$
 $i T = Id - i h^{\frac{1}{max}} \begin{pmatrix} 0 & W \\ W & 0 \end{pmatrix} + \theta(h^{\frac{2-E}{max}}), (E_{0}>0, g=g_{2})$

From microbo (al connection formulae to resonances
Suppose
$$E \in Res(P) \cap R$$
 and W a corresponding
resonant state: $PW = EW$.
 $\Rightarrow W \in L^{2}(Ex_{0}, two))$, $Yx_{0} \in W^{2}$.
Take $x_{0} \land a_{0}$.
 $Writing W = \begin{pmatrix} WA \\ W2 \end{pmatrix}$, we have
 $0 = \langle (P - F) W | W \rangle_{L^{2}([x_{0}, two))}$
 $= \| h D_{x} W \|_{L^{2}}^{2} - E \| W \|_{L^{2}}^{2} - h^{2} \land W^{1}(x_{0}), W(x_{0}) \rangle + 2h Re \land ro W_{1}W \rangle_{L^{2}}$

This gives us

$$I_{m}E = -\frac{h^{2}}{\|W\|_{L^{2}(K_{0},m^{0})}^{2}} \left(\frac{W_{a}'(x_{0}) W_{a}(x_{0}) + W_{z}'(x_{0}) W_{z}(x_{0})}{\|W\|_{L^{2}(K_{0},m^{0})}^{2}} \right)$$
Near x = x_{0}, we are far from the crossing and turning points
So the WEB expression is valid:
Nodulo $\partial(h)$ we have $W_{a} = 0$ and
 $W_{z} \sim \frac{dout}{(E - V_{z}(x))^{K_{z}}} \exp\left(-\frac{\lambda}{h}\int_{0}^{x} \sqrt{E - V_{z}(t)} dt\right)$
 $W_{z}' \sim \frac{1}{h} dout (E - V_{z}(h))^{K_{z}} \exp\left(\frac{\lambda}{h}\int_{0}^{x} \sqrt{E - V_{z}(t)} dt\right)$
for some constant dout $\in G$ which yields
 $W_{z}'(x_{0}) W_{z}(x_{0}) \sim \frac{1}{h} |dout|^{2}$

The microlocil behavior of W near Xo is on Sout W = dout fait on Sin W Z O If wis normalized on any portion 81 of T, free from Crossing and furning points then $W \equiv f_{x_n}$ on \mathcal{S}_n and We finally obtain Finally obtain $TmE = -\frac{h |a_{m+1}|^{2}}{2A'(\varepsilon)} + O(h^{3} + h^{m+1}).$

