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Motivation

“God is a mathematician of a very high order and He used advanced
mathematics in constructing the universe.”
- Paul Dirac

”With the utmost respect Mr. Dirac, are you sure?”
- J. Lorca Espiro
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Topological order Generalities

• Not described by the Landau theory.

• This order may only be detected by non-local observables.

• Finite ground state degeneracy that depends on the topology of the
system.

• Charge fractionalization (with respect to that of the constituent
particles) and/or fractional statistics of the quasiparticles.

• Long Range Entanglement (LRE): Entangled states that cannot be
separated without changing the topology.
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The simplest of them all: The Toric Code, generalities
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The simplest of them all: The Toric Code, generalities

• Trivial symmetry (stabilizers): Product of stabilizers Av or Bp,
operates as the identity over the ground states.

• Non-trivial symmetry (not a product of stabilizers): String with
non-trivial homology and not fixed value.
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Quantum Doubles Models and Gauge Theory picture

(a) a discretized
manifold L.

{E} → G ⇒ H =
⊕
{E}

C [G]e ,

H :=
∑
v∈L

(1v − Av ) +
∑
p∈L

(1p − Bp) ,

Av

a

b

c

d =

∑
g

|G|

a + g

b + g

c − g

d − g

Bp

a

b

c

d = δ (b + c − d − a,0)

a

b

c

d
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Mathematical Structure
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Discretization of Manifolds

Configuration

{V} ∼ C0 → G0

{E} ∼ C1 → G1

{F} ∼ C2 → G2

...

v1

v2

v3

v4

e2

e3

e4

e5 f1
f2

e1
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Data

i) C := (C•, ∂
C
• ), a freely generated (by Kn) abelian chain complex.

ii) G := (G•, ∂
G
• ) a finite chain complex of graded groups Gn.

iii) morphisms from Ci → Gj .

Definition

For all p ∈ Z, let hom(C,G)p :=
∏

n

Hom(Cn,Gn−p). The components

of f ∈ hom(C,G)p are denoted fn : Cn → Gn−p.

· · · Cn+1 Cn Cn−1 · · ·

· · · Gn+1 Gn Gn−1 · · ·

∂C
n+2 ∂C

n+1

fn+1

∂C
n

fn

∂C
n−1

fn−1

∂G
n+2 ∂G

n+1 ∂G
n ∂G

n−1

= hom(C,G)0fn+1 fn fn−1

= hom(C,G)−1

fn+1 fn fn−1

= hom(C,G)−1

fn+1 fn fn−1

= hom(C,G)+1

fn+1 fn fn−1

= hom(C,G)+1
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The (hom(C,G)•, δ•) cochain complex

Definition
We define the group homomorphism δp : hom(C,G)p → hom(C,G)p+1

(δpf )n = fn−1 ◦ ∂C
n − (−1)p∂G

n−p ◦ fn .

· · · Cn+1 Cn Cn−1 · · ·

· · · Gn+1 Gn Gn−1 · · ·

∂C
n+2 ∂C

n+1

fn+1

∂C
n

fn

∂C
n−1

fn−1

∂G
n+2 ∂G

n+1 ∂G
n ∂G

n−1

= hom(C,G)0δ δ δ

= δ0(f ) ∈ hom(C,G)1

We see that (hom(C,G)•, δ•) satisfies δp+1 ◦ δp = 0. Hence:

Definition (Cohomology)
Cohomology groups with coeff. in the chain complex

Hn(C,G) := ker(δn)/im(δn−1)
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The Models
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Configuration and Representation Hilbert spaces

Let f ∈ hom(C,G)0, we construct the states |f ⟩ =
⊗

n,x∈Kn

|fn (x)⟩,

H ≃ span∀f {|f ⟩} ≃
⊗

n,x∈Kn

C [Gn] and dim(H) < ∞ .

Definition (p-characters and dualization)

We take χπ̂ (f ) ≃ ⟨π̂|f ⟩ :=
∏

n,x∈Kn

⟨π̂n|fn⟩x ∼ ei
∑

n,x πn(fn)x

”Dualization procedure” ⟨π̂|O (f )⟩ = ⟨Ô (π̂) |f ⟩ defines δ̂p := δp+1

This defines π̂ ∈ hom(C,G)0 (dual space) with |π̂⟩ =
⊗

n,x∈Kn

|π̂n (x)⟩,

Ĥ ≃ span∀π̂ {|π⟩} ≃
⊗

n,x∈Kn

C
[
Ĝn

]
and dim(Ĥ) < ∞ .
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|fn (x)⟩,

H ≃ span∀f {|f ⟩} ≃
⊗

n,x∈Kn

C [Gn] and dim(H) < ∞ .

Definition (p-characters and dualization)

We take χπ̂ (f ) ≃ ⟨π̂|f ⟩ :=
∏

n,x∈Kn

⟨π̂n|fn⟩x ∼ ei
∑

n,x πn(fn)x

”Dualization procedure” ⟨π̂|O (f )⟩ = ⟨Ô (π̂) |f ⟩ defines δ̂p := δp+1

This defines π̂ ∈ hom(C,G)0 (dual space) with |π̂⟩ =
⊗

n,x∈Kn

|π̂n (x)⟩,

Ĥ ≃ span∀π̂ {|π⟩} ≃
⊗

n,x∈Kn

C
[
Ĝn

]
and dim(Ĥ) < ∞ .
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Global and Local operators

For all t ∈ hom−1, π̂ ∈ hom1 it follows that ⟨π̂|δ0 ◦ δ−1t⟩ = 1. Hence,

Operators On |f ⟩ ∈ H On |ρ̂⟩ ∈ Ĥ
Shift Pδ−1t |f ⟩ := |f + δ−1t⟩ Pδ−1t |ρ̂⟩ = ⟨ρ̂|δ−1t⟩ |ρ̂⟩
Clock Qδ1π̂ |f ⟩ := ⟨δ1π̂|f ⟩ |f ⟩ Qδ1π̂ |ρ̂⟩ = |ρ̂+ δ1π̂⟩

Qδ1π̂Pδ−1t = ⟨π̂|δ0 ◦ δ−1t⟩Pδ−1tQδ1π̂ they commute!!!

Projector Operators (global)

Aπ̂ :=

∑
t ⟨π̂|t⟩Pδ−1t

|hom−1|
, Bt :=

∑
π̂ ⟨t |π̂⟩Qδ1π̂

|hom1|
, Πt

π̂ = Aπ̂Bt

If x ∈ Kn and g ∈ Gn−1, r̂ ∈ Ĝn+1, then

for Proj. op. (locally compact)
gx∗ ∈ hom−1 , r̂ x∗ ∈ hom1 Ar̂ x∗ := Ar̂x , Bgx∗

:= Bgx
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”Gauge” (and ”Holonomy”) Equivalence

Proposition (Gauge equivalence (homotopy))

Let g ∈ hom0 and t ∈ hom−1. Let |f ⟩ = Pδ−1t |g⟩ = |g + δ−1t⟩ then

A0̂ |f ⟩ = A0̂ |g⟩ and we write f ≃ g (equivalence relation!)

≃ ≃

Proposition (Holonomy equivalence (co-homotopy))
Let ρ̂ ∈ hom0 and π̂ ∈ hom1. Let |ω̂⟩ = Qδ1π̂ |ρ̂⟩ = |ρ̂+ δ1π̂⟩ then

B0 |ω̂⟩ = B0 |ρ̂⟩ and we write ω̂ ≃ ρ̂ (equivalence relation!)
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Operators example: 0,1 gauge

γ

a

b
c

d

r

s

t

u

α β
v

· · · C3 C2 C1 C0 0

· · · 0 0 G1 G0 0

∂C
4 ∂C

3

f3

∂C
2

f2

∂C
1 ∂C

0

f0f1

∂G
4 ∂G

3 ∂G
2 ∂G

1 ∂G
0

Let α, β, γ ∈ G0, µ̂ ∈ Ĝ0, a,b, c,d , r , s, t ,u,g ∈ G1 and ĥ ∈ Ĝ1 then

A0̂x
=

∑
g Pδ−1g⊗x∗

|G1|
A0̂v

γ

a

b

c

d :=

∑
g ∂

G
1 (g) ▷

|G1|
γ

g + a

g + b

c − g

d − g

B0x =


∑

ĥ Q
δ1ĥp∗

|Ĝ1|∑
µ̂ Qδ1µ̂l∗

|Ĝ0|

B0p

r

s

t

u =

∑
ĥ

〈
ĥ|s + t − u − r

〉
p∣∣∣Ĝ1

∣∣∣
r

s

t

u

B0l gα β =

∑
µ̂

〈
µ̂|∂G

1 (g) + α− β
〉

l∣∣∣Ĝ0

∣∣∣ gα β
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Let α, β, γ ∈ G0, µ̂ ∈ Ĝ0, a,b, c,d , r , s, t ,u,g ∈ G1 and ĥ ∈ Ĝ1 then
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|Ĝ1|∑
µ̂ Qδ1µ̂l∗

|Ĝ0|
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ĥ Q
δ1ĥp∗
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Dynamics and Evolution

Definition (Hamiltonian (à la Kitaev))

We define the Hamiltonian operator H : H → H as:

H := − ln
(
Π0

0̂

)
= ln (2)

 ∑
n,x∈Kn

(
1x − A0̂x

)
+

∑
n,y∈Kn

(
1x − B0y

) .

The generator of the dynamics is δ (O) := [H,O] for any O ∈ O, then

Ut (O) := eitδ (O) gives the time evolution for O .

Proposition

It follows that δ (Aπ̂) = δ
(
Bt) = 0 ∀ π̂ ∈ hom0 and t ∈ hom0 . Thus,

Ut (Aρ̂) = Ut (Bω) = 1H , i.e. they are time independent .

Notice that the Z (X ) = Tr
(

e−βH
)
= Tr

((
Π0

0̂

)β
)

= GSDβ is a TP.
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Ground States Characterization
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Ground States

Proposition (Projector into the GS)

A |Ψ⟩ ∈ H0 (GSS) iff A0̂ |Ψ⟩ = |Ψ⟩ and B0̂ |Ψ⟩ = |Ψ⟩. Then Π0
0̂
= A0̂B

0

is a projector into H0 . This is GSD = Tr
(
Π0

0̂

)
.

Proposition (Frustration Free Models and Seed states)
• By construction |00̂⟩ := A0̂ |0⟩ ∈ H0 in the configuration basis.

Then, from the seed state above P f |00̂⟩ := |f0̂⟩ ∈ H0 iff f ∈ ker
(
δ0
)

.

• By construction |0̂0⟩ := B0 |0̂⟩ ∈ H0 in the representation basis.
Then, from the seed state above Qπ̂ |0̂0⟩ := |π̂0⟩ ∈ H0 iff π̂ ∈ ker (δ0).
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Ground State Degeneracy Theorem

Theorem (Dimension of the ground state subspace!!!)
The dimension of the ground state subspace H0 is given by:

GSD = |H0(C,G)| or equivalently GSD = |H0(C,G)| ,

The first characterization gives us a way to calculate the GSD for
general manifolds by means of the Universal Coefficient Theorem∣∣∣H0 (C,G)

∣∣∣ ∼= ∏
n

|Hn(C,Hn(G))| where

Hn(C,Hn(G)) ∼= Hom(Hn(C),Hn(G))⊕ Ext(Hn−1(C),Hn(G)) .
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GSD Calculation Examples
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Ground State Degeneracy of the Toric Code

0 C2 C1 C0 0

0 0 G1 0 0

∂C
3 ∂C

2

f2

∂C
1

f1

∂C
0

f0

∂G
3 ∂G

2 ∂G
1 ∂G

0

= hom(C,G)0

Let C = C(T 2) and G1 = Z2. Then HQDM = −
∑
x∈K0

A0̂x
−

∑
y∈K2

B0y .

Homology n
Z

Hn

(
T 2

)
Z ⊕ Z

Z

Homology n
0

Hn(G) Z2
0

Hence, GSD = |H0(C,G)| = |H1(C,H1(G))| = 22.
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Hence, GSD = |H0(C,G)| = |H1(C,H1(G))| = 22.
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GSD Z2, Z4 Abelian 1,2-gauge theory over S2
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Final remarks and Future work

(We are finishing, at last...)
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Final remarks

• These models become a general framework for QDM (at least in their
abelian versions).

• Although complete, the characterization presented mixes the
geometrical content and the group content, which makes them difficult
to picture physically.

• After all this treatment, the GSD calculation becomes a matter of a
”simple” algebraic topology exercise.

• This opens a huge class of new materials with exotic statistics and
fault tolerant error correction codes in more dimensions.
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Future Work

• New results show that the Classification of the GSS H0 is given by
the topological group H0(C,G)× H0(C,G).

• It remains to study the stability of the ground state subspace and
possible deformations of the models.

• It remains to study the Classification group and its algebra, so it can
be connected to the topological excited states.

• It also remains to study the exotic statistics of its excited states. this
can be done by studying the ”braiding representation” of the
classification group H0(C,G)× H0(C,G) (on it).

J. Lorca Espiro (Universidad de la Frontera) Quantum Double Models: January 2, 2025 28 / 31



Future Work

• New results show that the Classification of the GSS H0 is given by
the topological group H0(C,G)× H0(C,G).

• It remains to study the stability of the ground state subspace and
possible deformations of the models.

• It remains to study the Classification group and its algebra, so it can
be connected to the topological excited states.

• It also remains to study the exotic statistics of its excited states. this
can be done by studying the ”braiding representation” of the
classification group H0(C,G)× H0(C,G) (on it).

J. Lorca Espiro (Universidad de la Frontera) Quantum Double Models: January 2, 2025 28 / 31



Future Work

• New results show that the Classification of the GSS H0 is given by
the topological group H0(C,G)× H0(C,G).

• It remains to study the stability of the ground state subspace and
possible deformations of the models.

• It remains to study the Classification group and its algebra, so it can
be connected to the topological excited states.

• It also remains to study the exotic statistics of its excited states. this
can be done by studying the ”braiding representation” of the
classification group H0(C,G)× H0(C,G) (on it).

J. Lorca Espiro (Universidad de la Frontera) Quantum Double Models: January 2, 2025 28 / 31



Future Work

• New results show that the Classification of the GSS H0 is given by
the topological group H0(C,G)× H0(C,G).

• It remains to study the stability of the ground state subspace and
possible deformations of the models.

• It remains to study the Classification group and its algebra, so it can
be connected to the topological excited states.

• It also remains to study the exotic statistics of its excited states. this
can be done by studying the ”braiding representation” of the
classification group H0(C,G)× H0(C,G) (on it).

J. Lorca Espiro (Universidad de la Frontera) Quantum Double Models: January 2, 2025 28 / 31



Future Work

• New results show that the Classification of the GSS H0 is given by
the topological group H0(C,G)× H0(C,G).

• It remains to study the stability of the ground state subspace and
possible deformations of the models.

• It remains to study the Classification group and its algebra, so it can
be connected to the topological excited states.

• It also remains to study the exotic statistics of its excited states. this
can be done by studying the ”braiding representation” of the
classification group H0(C,G)× H0(C,G) (on it).

J. Lorca Espiro (Universidad de la Frontera) Quantum Double Models: January 2, 2025 28 / 31



Thank you

J. Lorca Espiro (Universidad de la Frontera) Quantum Double Models: January 2, 2025 29 / 31



Bibliography

• “Topological Order from a Cohomological and Higher Gauge Theory
perspective,” R. Costa de Almeida, J.P. Ibieta-Jimenez, J. Lorca Espiro,
P. Teotonio-Sobrinho, e-Print: 1711.04186 [math-ph]

• “Topological entanglement entropy in d-dimensions for Abelian higher
gauge theories,”J.P. Ibieta-Jimenez (Sao Paulo U.), M. Petrucci (Sao
Paulo U.), L.N. Queiroz Xavier (Sao Paulo U.), P. Teotonio-Sobrinho
(Sao Paulo U.), e-Print: 1907.01608 [cond-mat.str-el], DOI:
10.1007/JHEP03(2020)167, Published in: JHEP 03 (2020), 167.

• M.F. Araujo de Resende, J.P. Ibieta Jimenez, J. Lorca Espiro,
”Non-Abelian fusion rules from Abelian systems with SPT phases and
graph topological order”, Annals of Physics, Volume 446, 2022,
169109, ISSN 0003-4916, https://doi.org/10.1016/j.aop.2022.169109.

J. Lorca Espiro (Universidad de la Frontera) Quantum Double Models: January 2, 2025 30 / 31



Bibliography cont.

• M.F. Araujo de Resende, J.P. Ibieta Jimenez, J. Lorca Espiro,”
Quantum Double Models coupled to matter fields: a detailed review for
a dualization procedure”, International Journal of Quantum
Information, https://doi.org/10.1142/S0219749923500181

• “A dualization approach to the Ground State Subspace Classification
of Abelian Higher Gauge Symmetry Models (Frontera U.) e-Print:
2207.09522 [math-ph]

J. Lorca Espiro (Universidad de la Frontera) Quantum Double Models: January 2, 2025 31 / 31


	Motivation
	Structure
	The generalized Models
	Ground States
	GSD Calculation Examples
	Final remarks and Future work

