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Plan of the talk

1 Background: The Hermitian case, transfer matrices and spectral
averaging formula

2 Unitary m-channel operators and spectral averaging formula

3 Proof ideas and future directions (very brief)
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The Hermitian case: Transfer matrices and spectral
averaging formula

1d Schrödinger or Jacobi operator on ℓ2(Z) or ℓ2(Z+)

(Hψ)n = −ψn+1 + vn ψn − ψn−1

where vn ∈ R.
Hψ = zψ leads to

ψn+1 = (vn − z)ψn − ψn−1

or (
ψn+1

ψn

)
=

(
vn − z −1

1 0

)
︸ ︷︷ ︸

=:T z
n

(
ψn

ψn−1

)

(
ψn+1

ψn

)
= T z

nT
z
n−1 · · ·T z

0

(
ψ0

ψ−1

)
.
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Theorem (Carmona-Lacroix)

Let H be the operator on the half-line and let µ be the spectral measure at
|0⟩ ∈ ℓ2(Z+), and let f ∈ Cb(R), then

⟨0|f (H)|0⟩ =

∫
R
f (E )dµ(E ) = lim

n→∞

∫
R

f (E )dE

π ∥TE
n · · ·TE

1 TE
0 ( 10 ) ∥2

Corollary (Last-Simon)

Assume for p > 1 and a < b that there are un,E such that

lim inf
n→∞

∫ b

a
∥TE

n · · ·TE
1 TE

0

( un,E
1

)
∥2p dE < ∞

then the spectrum of H is purely absolutely continuous in (a, b) and has a
Lp(a, b) density w.r.t. the Lebesgue measure.
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Hermitian m-channel operators

Consider a graph G partitioned into finite shells Sn , |Sn| ≥ m

ℓ2(G) =
∞⊕
n=0

ℓ2(Sn) =
∞⊕
n=0

CSn

ψ =
∞⊕
n=0

ψn , ψn ∈ ℓ2(Sn) = CSn

We say that H is an m-channel operator across this partition if H can
be written as

(Hψ)n = −ΦnΥ
∗
n+1ψn+1 −ΥnΦ

∗
n−1ψn−1 + Vnψn

where Φn−1 ∈ CSn−1×m , Υn ∈ CSn×m are matrices of full rank m for
n ≥ 1.
Think of Φn and Υn as a collection of m linear independent
(orthogonal) vectors Φn,j ,Υn,j ∈ CSn , then

ΦnΥ
∗
n+1 =

m∑
j=1

|Φn,j⟩ ⟨Υn+1,j |
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Hermitian m-channel operators

As infinite matrix

H =

 V0 −Φ0Υ
∗
1

−Υ1Φ
∗
0 V1 −Φ1Υ

∗
2

. . .
. . .

. . .


In that case, consider Hψ = zψ which gives

ΦnΥ
∗
n+1ψn+1 +ΥnΦ

∗
n−1ψn−1 = (Vn − z)ψn

Let xn = Υ∗
nψn, x̃n = Φ∗

nψn, and z ̸∈ spec(Vn) then it follows

(Vn − z)−1Φnxn+1 + (Vn − z)−1Υnx̃n = ψn

Defining

(
αz,n βz,n
γz,n δz,n

)
=

(
Υ∗

n

Φ∗
n

)
(Vn − z)−1

(
Υn Φn

)
this gives

βz,nxn+1 + αz,nx̃n−1 = xn , δz,nxn+1 + γz,nx̃n−1 = x̃n
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βz,nxn+1 + αz,nx̃n−1 = xn , δz,nxn+1 + γz,nx̃n−1 = x̃n
From there, if βz,n is invertible, one may deduce(

xn+1

x̃n

)
=

(
β−1
z,n −β−1

z,nαz,n

δz,nβ
−1 γz,n − δz,nβ

−1
z,nα

)
︸ ︷︷ ︸

=:T z
n

(
xn
x̃n−1

)

For n = 0 we choose any Υ0 ∈ CS0×m of full rank m.

Theorem (S. )

Let µ(f ) = Υ∗
0f (H)Υ0 be the matrix valued spectral measure at Υ0, let

TE
0,n = TE

n · · ·TE
0 , then for f ∈ Cb(R)∫

f (E ) dµ(E ) =

∫
f (E )dν(E )+

lim
n→∞

∫
f (E )

π

[(
1 0

) (
TE
0,n

)∗
TE
0,n

(
1
0

)]−1

dE

where ν is induced by finitely supported eigenfunctions.
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Theorem (S.)

Let φ ∈ Cm of norm 1, ϕ = Υ0φ ∈ CS0 ⊂ ℓ2(G), µϕ(f ) = ⟨ϕ|f (H)|ϕ⟩,
then with νϕ = φ∗νφ (ν as before) we have for any f ∈ Cb(R)∫

f (E )µϕ(dE ) = νϕ(dE ) + lim
n→∞

∫
f (E ) dE

π min
φ∗v=0

∥∥∥TE
0,n

(
φ+v
0

)∥∥∥2
The connection to the former formula comes from the fact that for
∥x∥ = 1 one has

x∗(A∗A)−1x =
1

min
x∗v=0

∥A(x + v)∥2

Most general form: ranks rn = rank(Υn) = rank(Φn−1) increase, set
r0 = rank(Υ0) = 1 so Υ0 is a vector; the transfer matrices become
sets Tz

n ⊂ C2rn+1×2rn , particularly Tz
0,n ⊂ C2rn+1×2. Then∫

f (E )µΥ0(dE ) =

∫
f (E ) ν(dE ) + lim

n→∞

∫
f (E ) dE

π min ∥TE
0,n (

1
0 ) ∥2
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Unitary m channel operators

Think of H as a sum of two Hermitian operators, H = W + V where

V is the block-diagonal part V =
∞⊕
n=0

Vn, and W the rank m

connections, W =
∞∑
n=1

m∑
j=1

(
|Φn−1,j⟩ ⟨Υn,j | + |Υn,j⟩ ⟨Φn−1,j |

)
In the unitary case, instead of the sum of two Hermitian operators, we
have the product of two unitary operators U = WV, V being a direct
sum acting on the shells and W giving rank m connections between
Sn and Sn±1.
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Unitary m-channel operators

Let |Sm| ≥ 2m. We call U = WV and Ũ = VW a conjugated pair of
unitary m-channel operators if

V =
∞⊕
n=0

Vn where Vn ∈ U(Sn) .

W(u) = u e(0,−)e
∗
(0,−) + P0+

∞∑
n=1

(
(e(n−1,+), e(n,−))Wn

(
e∗(n−1,+)

e∗(n,−)

)
+ Pn

)
where e(n,±) ∈ CSn×m are such that the column vectors of

Qn = (e(n,−), e(n,+)) ∈ CSn×2m form an orthonormal system in CSn ,
Pn = 1Sn − QnQ

∗
n , u ∈ U(m) is some sort of ’left boundary

condition’, and Wn ∈ U(2m).
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Using an orthonormal basis of CSn where e(n,−) are the first and

e(n,+) the last vectors, one may write Ψn =

(
Ψ(n,−)

Ψ(n,0)

Ψ(n,+)

)
∈ C|Sn| where

Ψ(n,±) = e∗(n,±)Ψn ∈ Cm , Ψ(n,0) ∈ C|Sn|−2m . In this basis

V =

 V0
V1

V2

. . .

 ; W(u) =


u
1|S0|−2m

W1
1|S1|−2m

W2

. . .


block overlaps scattering zipper: ∀n, |Sn| = 2m
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Examples

Scattering zippers: ∀n : |Sn| = 2m

one-channel scattering zippers include CMV matrices and 1D
quantum walks :
For a 1D quantum walk on a (half) line, consider ℓ2(Z× {↑, ↓}), or
ℓ2(Z+ × {↑, ↓}), Sn = {(n, ↑), (n, ↓)}
we take a coin operator C =

⊕
n Cn, Cn ∈ U(Sn), and the shift

Sδn,↑ = δn+1,↑, Sδn,↓ = δn−1,↓. Then the walk is given by U = SC.
Define W to interchange (n, ↓) with (n + 1, ↑) and V = WSC, then
U = SC = WWSC = WV is in the form of a one-channel operator.

C. Sadel (PUC) Transfermatrix methods for m-channel unitary operators.



Examples

2D type quantum walks on cylinders Z× Zm or Z+ × Zm (using 4
spins going in 4 directions)
Here one finds |Sn| = 4m and the connections are of rank m, meaning
these models are not included within scattering zippers, but they are
unitary m channel operators.

Quantum walks on structures like nano tubes or (infinite)
carbon-chains
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Proposition (Marin, Schulz-Baldes)

With U (u) = W(u)V, Ũ (u) = VW(u), the following sets of equations are
equivalent (in fact for solutions Ψ,Φ ∈ CG)

(i) U (u)Ψ = zΨ ∧ W(u)Φ = Ψ

(ii) VΨ = zΦ ∧ W(u)Φ = Ψ

(iii) Ũ (u)Φ = zΦ ∧ W(u)Φ = Ψ.

From (ii) one can deduce

Ψ(0,−) = uΦ(0,−) , Ψ(n,0) = Φ(n,0) ,
(

Ψ(n−1,+)

Ψ(n,−)

)
= Wn

(
Φ(n−1,+)

Φ(n,−)

)
(

Ψ(n,−)

Ψ(n,+)

)
= Q∗

n(z
−1Vn − Pn)

−1Qn

(
Φ(n,−)

Φ(n,+)

)
For |z | = 1 one finds that Q∗

n(z
−1Vn − Pn)

−1Qn is unitary.
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Proposition (Marin, Schulz-Baldes; S.)

For a matrix M =

(
α β
γ δ

)
∈ C2m×2m where β is invertible define

φ♯(M) =

(
β−1 −β−1α
δβ−1 γ − δβ−1α

)
and φ♭(M) =

(
γ − δβ−1α δβ−1

−β−1α β−1

)
.

Then,(
Ψ−
Ψ+

)
= M

(
Φ−
Φ+

)
⇔
(

Φ+

Ψ+

)
= φ♯(M)

(
Ψ−
Φ−

)
⇔
(

Ψ+

Φ+

)
= φ♭(M)

(
Φ−
Ψ−

)
.

Moreover, if M ∈ U(2m), then φ♯(M), φ♭(M) ∈ U(m,m), where

U(m,m) =
{
T ∈ C2×2 : T ∗ ( 1 0

0 −1

)
T =

(
1 0
0 −1

)}
A side remark: If M ∈ Her(2m), then φ♯(M), φ♭(M) are Hermitian
symplectic.
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Transfer matrices

From there we get(
Φ(n,+)

Ψ(n,+)

)
= T ♯

z,n

(
Ψ(n,−)

Φ(n,−)

)
, T ♯

z,n = φ♯

(
Q∗

n(z
−1Vn − Pn)

−1Qn

)
(
Ψ(n,−)

Φ(n,−)

)
= T ♭

n

(
Φ(n−1,+)

Ψ(n−1,+)

)
, T ♭

n = φ♭(Wn) = φ♯(W
∗
n )

and we define the transfer matrices

Tz,n = T ♯
z,nT

♭
n to get

(
Φ(n,+)

Ψ(n,+)

)
= Tz,n

(
Φ(n−1,+)

Ψ(n−1,+)

)
.

For n = 0 we let T ♭
0 = 1

Note for |z | = 1 we have Tz,n ∈ U(m,m).
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Theorem

Let m = 1 and let µ be the spectral measure of U (u) at e(0,−), then, there
is a pure point measure ν induced by eigenvectors of compact support,
such that for f ∈ C (S1),∫

S1

f (z)dµ(z) =

∫
S1

f (z)dν(z)+

lim
n→∞

∫ 2π

0

f (e iφ) dφ

π
∥∥Te iφ,nTe iφ,n−1 · · ·Te iφ,0 (

u
1 )
∥∥2

In case m > 1 we have some positive m ×m matrix valued measure and
letting Tz,0,n = Tz,nTz,n−2 · · ·Tz,0 we get∫

S1

f (z)dµ(z) =

∫
S1

f (z)dν(z)+

lim
n→∞

∫ 2π

0

f (e iφ)

π

(
( u∗ 1 )T ∗

e iφ,0,nTe iφ,0,n (
u
1 )
)−1

dφ
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Key relation to Green’s function

Q0,N =
(
e(0,−) e(N,+)

)
∈ CGN×2, P0,N = 1GN

−Q0,NQ
∗
0,N ∈ CGN×GN

R
(u,v)
z,[0,N] = Q∗

0,N(z
−1U (u,v)

N − 1GN
)−1Q0,N

Proposition

For any N and any u, v , z ∈ C where all quantities are well defined, we
have

φ♯

(
R
(u,v)
z,[0,N]

)
=

(
1 −1
0 1

)(
v 0
0 1

)
Tz,[0,N]

(
1 0
0 u−1

)(
1 0
1 1

)

φ♯

(
R̃
(u,v)
z,[0,N]

)
=

(
1 −1
0 1

)(
1 0
0 v−1

)
Tz,[0,N]

(
u 0
0 1

)(
1 0
1 1

)
.
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Criteria for a.c. spectrum

Corollary

Assume we find ζn(φ) ∈ Cm and p > 1 such that

lim inf
n→∞

∫ b

a

∥∥∥Te iφ,0,n

(
uζn(φ)
ζn(φ)+χ

)∥∥∥2p dφ < ∞

Then, the measure χ∗(µ− ν)χ (part of spectral measure at e(0,−)χ ) is

purely absolutely continuous in e i(a,b), with respect to the Haar measure
on S1.
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Corollary

Let be given a periodic scattering zipper U = WV, with
Vn =

(
an bn
cn dn

)
,Wn =

(
an bn
cn dn

)
∈ U(2), Vn+p = Vn, Wn+p = Wn,

bn ̸= 0, bn ̸= 0. Let Tz = Tz,1,p be the transfer matrix for the operator U
over one period and let Σ = {z ∈ S1 : |Tr(Tz)| < 2}.

Let Ûω = ŴωV̂ω be a random perturbation where

The family of pairs (V̂n, Ŵn)n is independent∑
n

[
∥E(V̂n−Vn)∥+∥E(Ŵn−Wn)∥+E(∥V̂n−Vn∥2)+E(∥Ŵn−Wn∥2)

]
< ∞

∃ ε > 0 ∀ n ∈ Z+ : |bn| > ε ∧ |bn| > ε almost surely.

Then

a σess(U) = Σ, and almost surely, σess(Ûω) = Σ.

b The spectrum of U and, almost surely, the spectrum of Ûω are purely
absolutely continuous in Σ.
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Proof ideas

Connect products of first n transfer matrices to Green’s function and
Poisson kernel of spectral measure for finite pieces of the operator U .
Due to the set-up and “grouping” of shells to bigger shells, formulas
only need to be proved for n = 1.

Take a spectral average over a right boundary condition v and realize
that by strong resolvent convergence, for n → ∞ the averaged
measures converge weakly to the actual spectral measure

On the level of the Poisson transform this corresponds to replacing v
by 0.

Then, we compute the density of the absolutely continuous part and
analyze the singular part.
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some future directions

Transfer matrices and spectral averaging formula for general finite
hopping unitary operators

Deift-Killip type Theorems for quantum walks on antitrees and
operators with radial symmetry; sum rules

Absolutely continuous spectrum for random l2 perturbed coins on the
strip, cylindrical structures, nano tubes
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T H A N K Y O U !!
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