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[ Manifold of mixed quantum states &4 }

> A mixed state of a quantum system is given by a non-negative
trace-class operator p : H — H with trace one (density matrix)
‘H = system Hilbert space. In what follows: dimH =n < o

> Open manifold of invertible mixed states
EV={p:H—>H;p>0,trp=1}
Boundary 03 = {non-invertible p > 0,trp = 1}
e.g. pure state py = [P )Y| € 0Ey.
> Tangent space T,E4 at p

Toen=1p=p"5trp=0;
(real) vector space of self- /
adjoint traceless op. on H.




t Contractive distances on £y J

e The manifold of quantum states £y

can be equipped with many distances
d . g’]-[ X g”}-[ —> R+.

CONTRACTIVE DISTANCE

e From a QI point of view, interesting distances must be contractive
under CPTP maps, i.e.for any such map ® on &4, V p,0 € &y,
d(®(p), (o)) < d(p,0)
Physically: irreversible evolutions can only decrease the
distance between two states.

e A contractive distance is in particular unitarily invariant, i.e.
d(UpU*,UcU") = d(p, o) for any unitary U on H

e The LP-distances d,(p, o) = |p — |, = (tr|p — o|P)1/P are
not contractive excepted for p = 1 (trace distance) [Ruskai ’94].



.~ Petz’s characterization of contractive distances

e Classical setting: there exists a unique (up to a multiplicative
factor) contractive Riemannian distance dc,s on the probability
simplex Ec1as, With Fisher metric ds* = Y, dpi/pr  [Cencov '82]

e Quantum generalization: any Riemannian contractive distance
on the set of states £y with n = dim H < oo has metric

=N clpr, p) [<KIAIDP

k=1

where pi and |k) are the eigenvalues and eigenvectors of p,

~ pfla/p) + qf(p/q)
P ) = 2pq f(p/q) f(q/p)

and f : R, — R_ is an arbitary operator-monotone function
such that f(a;) = :Ef(l/x) [Morozova & Chentsov ‘90, Petz ’96]




| Bures distance

> Fidelity (generalizes F=|(1)|¢)|? for mixed states) [Uhlmann "76]

Fp,o) = |pvol} = (tr[v/\opyol)” = F(o, p)

1
> Bures distance: dp,(p,0) = (2 — 2\/}7(,0, 0))? [Bures '69]

— smallest contractive Riemannian distance [Petz "96]
— coincides with the Fubiny-Study metric on PH for pure states

— dpu(p,0)? is jointly convex in (p, o).



( Bures metric and arccos distance

> Bures metric: ds3 = dpu(p,p +t9)* = (gBu),(p, p)t* + o(t?)

= Geodesic distance for the Bures metric: arccos distance

OBu(p, 0) = min,., ., £(y) = arccos\/F(p, o)

(min over all smooth curves v :[0,1] — &, ¥(0) = p, v(1) = o)

< fpy has same metric as dpy(p, o) = 2sin(fpu(p,0)/2).

> Geodesics: smooth curves v, : [0,0] — &y with constant
velocity minimizing the length locally.



[ Example: one qubit }

For a qubit (% = C?), quantum states
can be parametrized by the Bloch

vector r as

p=pr)=3(1+r-3), |r|<1.

with o1, 09, 03= Pauli matrices.

Bures metric
dsg, = (9B)apdadB = i(dt2 + sin” ¢ (d#* + sin” Hdgpz))
t = arcsin(|7]) € [0, 7/2], 8, o= spherical coordinate angles
— metric of the (half) 3-sphere S° < R*.
Consequences: (i) £V has a constant positive curvature.

(i) the geodesics are projections of great circles of S on the
r = (x,y, z)-hyperplane



( Determination of Bures geodesics

Consider a system with Hilbert space dimensionn < co.
Let p and o € £y be two invertible mixed states.

TH1: To any unitary self-adjoint operator V' commuting with
Aoy = (y/poy/p)/?, there corresponds a geodesic arc p — o:

VeV (T) = Xpov (T) p Xpov (1) 5 0<7 <Oy,

X0 (7) = i (5in(r)p V200,V p /2 + sim 0y — 7)1)
with 0y = geodesic length = arccos(tr|As,V|)
<> there are N = 2" (resp. N = o0) geodesic arcs joining p
and o if A, has nondegenerated (resp. degenerate) spectrum.

—> the shortest geodesic arc is obtained for V = 1.
It has length 61 = dg(p, o)
Previous works: V = 1 [Ericsson, J.Phys.A’05; Barnum, PhD thesis '98]



[ Intersections with the boundary }

e Boundary of quantum states
0E4 = {non-invertible p = 0,trp = 1}

e The number of intersections of v, v

S b P
p

with the boundary ¢&4; between p o

and o is equal to the multiplicity of the eigenvalue —1 of V.

(note that spec(V') = {1, —1} since V is unitary & s.a.).

In particular, the shortest geodesic ~, ; does not interest

0E4 between p and o.
By prolongating ~4,: closed geodesics intersecting gy times
0&y, with gy = f§ of distinct eigenvalues of M ,, /. The inter-
section states p; have ranks n —m; v and supports (1 — P; v )H,
with m; v, P; v = multiplicities and spectral projectors of M, v/
[Ericsson, J.Phys.A "05]
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| Purifications and horizontal lifts

> Consider an ancilla (environment) with Hilbert space Ha,
dimH4 = n. A purification of the system state p € &y is
a pure state |¥) e H ® H 4 such that

p = tra|¥)¥| = m(]¥))

> Purifications of p are not unique:
given a purification |W(), all other
purifications are in the orbit of p under

the unitary group action on Ha: A

m p)={|¥)=1QUa|Vg); Ux unitary on H 4}
> Horizontal lift of a curve v : [0,0] — E4: t € [0,0] — |WL(t)),
v(t) = (| Tn(t))) , [Tn(t)) e 9w, (+), horizontal subspace



Geodesic Hamiltonian

e TH 2: There is a Hamiltonian Hy v on H® H 4 s.t.

where |U) is a purification of p. This Hamiltonian is

| Hgy = —i([U)(Wy| — [Ty (¥|)
where |Uy ) is a normalized vector orthogonal to |¥) satisfying
the horizontality condition:

Wy € ey = {LQ®L4|V); L self-adjoint ,(L ® 1 4)v = 0}

— Geodesics correspond to physical evolutions of the system
coupled to an ancilla.

o In particular, if 41 passes through a pure state p = p,, the
initial system-ancilla state is decorrelated, |¥) = 1)) ® |a).
NOTE: always the case for a qubit case (n = 2).
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Uhlmann fiber bundle

Unit sphere Quantum states Consider the unit sphere S of
: 2_ : 2 .
(dim.2n"-h) = (dim.n®-1) the normalized vectors

W) e HOH 4, withdimH 4 =
o @ dim H = n, equipped with the
norm distance
Distance : d , dg, dg(‘\lf>, ’(I)>) — H\Ij — (I)H
* Projection map: 7: S — £y
m(|¥)) = tra |¥)(¥
Orbit of p under the unitary group action:
1 (p) ={|¥) = 1®Ua|¥o); Ua unitary on H 4}
*x Then &4 = &/U(n). The Bures distance on &y is [Uhlmann *76]

dpu(p,0) = inf ds([¥o),|P))
®)er (o)



( Riemannian submersions and geodesics W

*x The map w from (S™,ds) to (E1V,dg) is a  smooth
Riemannian submersion, i.e. its differential D7y, is an isometry
[kel‘(D7T|,\1,>)]L — Tpgq_[ for all |\If> eS.

* TH: A smooth Riemannian
submersion 7 : SV — g
maps geodesics of (S™, dg)
with horizontal initial tangent

; vectors |y e [ker(Dr|jg) |+

P 7 onto geodesics in (E]1, dp).

* SV is induced by the Euclidean metric ds on H ® H
— the geodesics |¥, /(7)) on S™ are great circles.

* Using these fact, one finds the explicit form of the Bures geodesics
and obtains that |, /(7)) = e TV | D),
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Uhlmann holonomy

e For a given purification |¥)
e H® Ha of p, let
7€ [0, 7] — |T5(7))
be a horizontal geodesic
on H ® H 4 starting at |V).
(Uhlmann parallel transport).

e Given two ONB {]k)}",g:l of H and {|a;)}7, of Ha, let

T ‘\Ijref \/fyg V ® LA ZZzl |k> & ’ak>
be a reference lift of the geodesic v, v s.t. |U2 (0)) = |V).

e Uhlmann holonomy: unitary operator U,4(t) on H 4 such that

WL(T)) = L@ UA(T)|W,e(T))



Uhlmann phase of geodesics

o Let U,, be the unitary operator in the polar decomposition
p y op p

Vo /P =Usplop o Nop =[oy/p] .
Then UA(T) = (U,Yg(T)pV)T

V= unitary defining the geodesic, O1 = Z<l!0!k> [ oy
k,l

e Uhlmann geometric phase: ¢y(7) = arg{¥|¥¢ (7))
(independent of the purification |¥) of p). One finds

0 ifo<7<m7/2
T) = tr(A, (»,V) =
Pulr) (gt V) {7‘(‘ if 71/2 <7<
— topological kick at T = /2, i.e. when |Yy (7)) L|V).

e In particular, the Uhlmann phase of any closed geodesic is non-
trivial, ou(m) = 7. Indeed, |V} (k7)) = (—DFPY, k=12
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| Conclusions |

> Explicit form of the Bures geodesics on the manifold of quantum
states
— generalizes previous works by

A. Ericsson and H.N. Barnum.
— relies on the theory of Riemannian

submersions.

> The geodesics can be realized as physical evolutions of the system
coupled to an ancilla

— can be simulated in experiments and quantum computers!

> The Uhlmann phase of closed geodesics is
non trivial and exhibits a topological kick.
< the shortest geodesic arc between [

2 invertible states, which does not
intersect 0Ey, has a trivial phase. n =3
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k Why are Bures geodesics interesting?

* Applications to quantum metrology:
FEstimate some unknown parameter(s) ¢

from measurements on the output state

of a ¢-dependent quantum channel. pat __./
< Bures metric gg(p, p) = Quantum I .
Fisher Information giving the best _'r/_' 1=/

possible precision in the estimation.

Bloch Sphere: setup 3

* Applications to quantum control: T
Steering an initial state to a target e

state using a given time-dependent
Hamiltonian / Liouvillian  depending N e
on some control parameters. NS

* Relation with the Quantum speed limit.




