

Bures geodesics on the manifold of quantum states

Dominique Spehner

Departamento de Ingeniería Matemática Universidad de Concepción, Chile

FisMat Days, Afunalhue, 16-19/12/2024

- Geodesics on the manifold of quantum states
- Geodesics as non-Markovian physical evolutions
- Ideas of the proofs of Theorems 1 and 2
- Uhlmann holonomy
- Conclusions & perspectives

Joint work with Sergio Carrasco, UdeC

Manifold of mixed quantum states $\mathcal{E}_{\mathcal{H}}$

- ▷ A **mixed state** of a quantum system is given by a non-negative trace-class operator $\rho : \mathcal{H} \to \mathcal{H}$ with trace one (density matrix) $\mathcal{H} =$ system Hilbert space. In what follows: dim $\mathcal{H} = n < \infty$
- ▷ Open manifold of invertible mixed states

$$\mathcal{E}_{\mathcal{H}}^{\text{inv}} = \{ \rho : \mathcal{H} \to \mathcal{H} ; \rho > 0, \text{tr } \rho = 1 \}$$

Boundary $\partial \mathcal{E}_{\mathcal{H}} = \{ \text{non-invertible } \rho \ge 0, \text{tr } \rho = 1 \}$
e.g. pure state $\rho_{\psi} = |\psi\rangle \langle \psi| \in \partial \mathcal{E}_{\mathcal{H}}.$

▷ Tangent space $T_{\rho} \mathcal{E}_{\mathcal{H}}$ at ρ $T_{\rho} \mathcal{E}_{\mathcal{H}} = \{\dot{\rho} = \dot{\rho}^*; \operatorname{tr} \dot{\rho} = 0\}$ (real) vector space of selfadjoint traceless op. on \mathcal{H} .

Contractive distances on $\mathcal{E}_{\mathcal{H}}$

The manifold of quantum states *E*_H can be equipped with many distances *d* : *E*_H × *E*_H → ℝ₊.

CONTRACTIVE DISTANCE

- From a QI point of view, interesting distances must be contractive under CPTP maps, i.e. for any such map Φ on $\mathcal{E}_{\mathcal{H}}$, $\forall \rho, \sigma \in \mathcal{E}_{\mathcal{H}}$, $d(\Phi(\rho), \Phi(\sigma)) \leq d(\rho, \sigma)$
 - **Physically:** *irreversible evolutions can only decrease the distance between two states.*
- A contractive distance is in particular unitarily invariant, i.e. $d(U\rho U^*,U\sigma U^*)=d(\rho,\sigma) \text{ for any unitary } U \text{ on } \mathcal{H}$
- The L^p-distances d_p(ρ, σ) = ||ρ − σ||_p = (tr |ρ − σ|^p)^{1/p} are not contractive excepted for p = 1 (trace distance) [Ruskai '94].

Petz's characterization of contractive distances

- Classical setting: there exists a unique (up to a multiplicative factor) contractive Riemannian distance d_{clas} on the probability simplex $\mathcal{E}_{\text{clas}}$, with Fisher metric $ds^2 = \sum_k dp_k^2/p_k$ [Cencov '82]
- Quantum generalization: any Riemannian contractive distance on the set of states E_H with n = dim H < ∞ has metric

$$g_{\rho}(\dot{\rho},\dot{\rho}) = \sum_{k,l=1}^{n} c(p_k,p_l) |\langle k|\dot{\rho}|l\rangle|^2$$

where p_k and $|k\rangle$ are the eigenvalues and eigenvectors of ρ , $c(p,q)=\frac{pf(q/p)+qf(p/q)}{2pqf(p/q)f(q/p)}$

and $f : \mathbb{R}_+ \to \mathbb{R}_+$ is an arbitrary operator-monotone function such that f(x) = xf(1/x) [Morozova & Chentsov '90, Petz '96]

Bures distance

 \succ Fidelity (generalizes $F = |\langle \psi | \phi \rangle|^2$ for mixed states) [Uhlmann '76]

$$F(\rho,\sigma) = \|\sqrt{\rho}\sqrt{\sigma}\|_1^2 = \left(\operatorname{tr}[\sqrt{\sqrt{\sigma}\rho\sqrt{\sigma}}]\right)^2 = F(\sigma,\rho)$$

$$\succ$$
 Bures distance: $d_{\text{Bu}}(\rho, \sigma) = \left(2 - 2\sqrt{F(\rho, \sigma)}\right)^{\frac{1}{2}}$ [Bures '69]

- \hookrightarrow has metric of the Petz form with $f(x) = \frac{x+1}{2}$
- \hookrightarrow smallest contractive Riemannian distance [Petz '96]
- \hookrightarrow coincides with the Fubiny-Study metric on $P\mathcal{H}$ for pure states
- $\hookrightarrow d_{\mathrm{Bu}}(\rho,\sigma)^2$ is jointly convex in (ρ,σ) .

Bures metric and arccos distance

 \triangleright Bures metric: $ds_{Bu}^2 = d_{Bu}(\rho, \rho + t\dot{\rho})^2 = (g_{Bu})_{\rho}(\dot{\rho}, \dot{\rho})t^2 + o(t^2)$

▷ Geodesic distance for the Bures metric: arccos distance

$$\theta_{\mathrm{Bu}}(\rho,\sigma) = \min_{\gamma:\rho \to \sigma} \ell(\gamma) = \arccos \sqrt{F(\rho,\sigma)}$$

(min over all smooth curves $\gamma : [0,1] \to \mathcal{E}_{\mathcal{H}}, \gamma(0) = \rho, \gamma(1) = \sigma$) $\hookrightarrow \theta_{\mathrm{Bu}}$ has same metric as $d_{\mathrm{Bu}}(\rho,\sigma) = 2\sin(\theta_{\mathrm{Bu}}(\rho,\sigma)/2)$.

 \succ Geodesics: smooth curves $\gamma_g : [0, \theta] \mapsto \mathcal{E}_{\mathcal{H}}$ with constant velocity minimizing the length *locally*.

Example: one qubit

For a qubit $(\mathcal{H} = \mathbb{C}^2)$, quantum states can be parametrized by the Bloch vector **r** as

$$\rho = \rho(\mathbf{r}) = \frac{1}{2} (\mathbb{1} + \mathbf{r} \cdot \vec{\sigma}), \ |\mathbf{r}| \leq 1.$$

with $\sigma_1, \sigma_2, \sigma_3 =$ Pauli matrices.

Bures metric

X $1\rangle$ Y Y

 $ds_{\rm B}^2 = (g_{\rm B})_{\alpha\beta} d\alpha d\beta = \frac{1}{4} \Big(dt^2 + \sin^2 t \big(d\theta^2 + \sin^2 \theta d\varphi^2 \big) \Big)$ $t = \arcsin(|\vec{r}|) \in [0, \pi/2], \ \theta, \varphi = \text{spherical coordinate angles}$ $\hookrightarrow \text{ metric of the (half) 3-sphere } S^3 \subset \mathbb{R}^4.$

Consequences: (i) $\mathcal{E}_{\mathcal{H}}^{\text{inv}}$ has a constant positive curvature. (ii) the geodesics are projections of great circles of S^3 on the $\mathbf{r} = (x, y, z)$ -hyperplane

Determination of Bures geodesics

Consider a system with Hilbert space dimension $n < \infty$. Let ρ and $\sigma \in \mathcal{E}_{\mathcal{H}}$ be two invertible mixed states.

TH1: To any unitary self-adjoint operator V commuting with $\Lambda_{\sigma\rho} = (\sqrt{\rho} \sigma \sqrt{\rho})^{1/2}$, there corresponds a geodesic arc $\rho \to \sigma$:

 $\gamma_{\mathrm{g},V}(\tau) = X_{\rho\sigma,V}(\tau) \, \rho \, X_{\rho\sigma,V}(\tau) \quad , \quad 0 \leqslant \tau \leqslant \theta_V \; ,$

 $\begin{aligned} X_{\rho\sigma,V}(\tau) &= \frac{1}{\sin \theta_V} \Big(\sin(\tau) \rho^{-1/2} \Lambda_{\sigma\rho} V \rho^{-1/2} + \sin(\theta_V - \tau) \mathbb{1} \Big) \\ \text{with } \theta_V &= \text{geodesic length} = \arccos(\text{tr}[\Lambda_{\sigma\rho} V]) \end{aligned}$

 \hookrightarrow there are $N = 2^n$ (resp. $N = \infty$) geodesic arcs joining ρ

and σ if $\Lambda_{\sigma\rho}$ has nondegenerated (resp. degenerate) spectrum.

$$\hookrightarrow$$
 the shortest geodesic arc is obtained for $V = \mathbb{1}$.

It has length $heta_1 = d_{
m B}(
ho,\sigma)$

Previous works: V = 1 [Ericsson, J.Phys.A '05; Barnum, PhD thesis '98]

Intersections with the boundary

 ρ_1

- Boundary of quantum states $\partial \mathcal{E}_{\mathcal{H}} = \{ \text{non-invertible } \rho \ge 0, \text{tr } \rho = 1 \}$
- The number of intersections of $\gamma_{g,V}$ with the boundary $\partial \mathcal{E}_{\mathcal{H}}$ between ρ and σ is equal to the multiplicity of the eigenvalue -1 of V. (note that spec $(V) = \{1, -1\}$ since V is unitary & s.a.). In particular, the shortest geodesic $\gamma_{g,1}$ does not interest $\partial \mathcal{E}_{\mathcal{H}}$ between ρ and σ .
- By prolongating $\gamma_{g,V}$: closed geodesics intersecting q_V times $\partial \mathcal{E}_{\mathcal{H}}$, with $q_V = \sharp$ of distinct eigenvalues of $M_{\rho\sigma,V}$. The intersection states ρ_i have ranks $n m_{i,V}$ and supports $(1 P_{i,V})\mathcal{H}$, with $m_{i,V}, P_{i,V} =$ multiplicities and spectral projectors of $M_{\rho\sigma,V}$ [*Ericsson*, *J.Phys.A* '05]

- $\checkmark\,$ Geodesics on the manifold of quantum states
- Geodesics as non-Markovian physical evolutions

Purifications and horizontal lifts

 \triangleright Consider an ancilla (environment) with Hilbert space \mathcal{H}_A , $\dim \mathcal{H}_A \ge n$. A purification of the system state $\rho \in \mathcal{E}_{\mathcal{H}}$ is a pure state $|\Psi\rangle \in \mathcal{H} \otimes \mathcal{H}_A$ such that

 $\rho = \operatorname{tr}_A |\Psi\rangle \langle \Psi| = \pi(|\Psi\rangle)$

▷ Purifications of ρ are not unique: given a purification $|\Psi_0\rangle$, all other purifications are in the *orbit of* ρ *under the unitary group action on* \mathcal{H}_A :

 $\pi^{-1}(\rho) = \{ |\Psi\rangle = \mathbb{1} \otimes U_A |\Psi_0\rangle; U_A \text{ unitary on } \mathcal{H}_A \}$

 \succ Horizontal lift of a curve $\gamma : [0, \theta] \rightarrow \mathcal{E}_{\mathcal{H}}: t \in [0, \theta] \mapsto |\Psi_{h}(t)\rangle$,

 $\gamma(t) = \pi(|\Psi_{\rm h}(t)\rangle), \ |\Psi_{\rm h}(t)\rangle \in \mathfrak{H}_{|\Psi_{\rm h}(t)\rangle} \text{ horizontal subspace}$

Geodesic Hamiltonian

• TH 2: There is a Hamiltonian $H_{g,V}$ on $\mathcal{H} \otimes \mathcal{H}_A$ s.t.

$$\gamma_{\mathrm{g},V}(\tau) = \mathrm{tr}_A\left(e^{-\mathrm{i}\tau H_{\mathrm{g},V}}|\Psi\rangle\langle\Psi|e^{\mathrm{i}\tau H_{\mathrm{g},V}}\right)$$

where $|\Psi\rangle$ is a purification of ρ . This Hamiltonian is $H_{\mathrm{g},V} = -\mathrm{i}(|\Psi\rangle\langle\dot{\Psi}_V| - |\dot{\Psi}_V\rangle\langle\Psi|)$

where $|\Psi_V\rangle$ is a normalized vector orthogonal to $|\Psi\rangle$ satisfying the *horizontality condition:*

 $|\Psi_V\rangle \in \mathfrak{H}_{|\Psi\rangle} = \{L \otimes \mathbb{1}_A |\Psi\rangle; L \text{ self-adjoint }, \langle L \otimes \mathbb{1}_A \rangle_{\Psi} = 0\}$

- → Geodesics correspond to physical evolutions of the system coupled to an ancilla.
- In particular, if $\gamma_{g,V}$ passes through a pure state $\rho = \rho_{\psi}$, the initial system-ancilla state is decorrelated, $|\Psi\rangle = |\psi\rangle \otimes |\alpha\rangle$. NOTE: always the case for a qubit case (n = 2).

- $\checkmark\,$ Geodesics on the manifold of quantum states
- $\checkmark\,$ Geodesics as non-Markovian physical evolutions
- Ideas of the proofs of Theorems 1 and 2

Uhlmann fiber bundle

Consider the unit sphere S of the normalized vectors $|\Psi\rangle \in \mathcal{H} \otimes \mathcal{H}_A$, with $\dim \mathcal{H}_A =$ $\dim \mathcal{H} = n$, equipped with the norm distance

$$d_{\mathcal{S}}(|\Psi\rangle, |\Phi\rangle) = \|\Psi - \Phi\|$$

\star Projection map: $\pi : S \to \mathcal{E}_{\mathcal{H}}$

$$\pi(|\Psi\rangle) = \operatorname{tr}_A |\Psi\rangle\langle\Psi|$$

Orbit of ρ under the unitary group action:

$$\pi^{-1}(\rho) = \{ |\Psi\rangle = \mathbb{1} \otimes U_A |\Psi_0\rangle; U_A \text{ unitary on } \mathcal{H}_A \}$$

★ Then $\mathcal{E}_{\mathcal{H}} = \mathcal{S}/U(n)$. The Bures distance on $\mathcal{E}_{\mathcal{H}}$ is [Uhlmann '76] $d_{\mathcal{H}}(\alpha, \sigma) = \inf_{\mathcal{H}} d_{\mathcal{H}}(|\mathbf{M}| \ge |\mathbf{\Phi}\rangle)$

$$d_{\mathrm{Bu}}(\rho,\sigma) = \inf_{|\Phi\rangle \in \pi^{-1}(\sigma)} d_{\mathcal{S}}(|\Psi_0\rangle, |\Phi\rangle)$$

Riemannian submersions and geodesics

★ The map π from $(\mathcal{S}^{\text{inv}}, d_{\mathcal{S}})$ to $(\mathcal{E}_{\mathcal{H}}^{\text{inv}}, d_{\text{B}})$ is a smooth Riemannian submersion, i.e. its differential $D\pi|_{|\Psi\rangle}$ is an isometry $[\ker(D\pi|_{|\Psi\rangle})]^{\perp} \to T_{\rho}\mathcal{E}_{\mathcal{H}}$ for all $|\Psi\rangle \in \mathcal{S}$.

★ TH: A smooth Riemannian submersion π : $S^{inv} \rightarrow \mathcal{E}_{\mathcal{H}}^{inv}$ maps geodesics of $(S^{inv}, d_{\mathcal{S}})$ with horizontal initial tangent vectors $|\dot{\Psi}_{h}\rangle \in [\ker(D\pi|_{|\Psi\rangle})]^{\perp}$ onto geodesics in $(\mathcal{E}_{\mathcal{H}}^{inv}, d_{B})$.

- ★ S^{inv} is induced by the Euclidean metric d_S on $\mathcal{H} \otimes \mathcal{H}_A$ \hookrightarrow the geodesics $|\Psi_{g,V}(\tau)\rangle$ on S^{inv} are great circles.
- ★ Using these fact, one finds the explicit form of the Bures geodesics and obtains that $|\Psi_{g,V}(\tau)\rangle = e^{-i\tau H_{g,V}}|\Psi\rangle$.

- $\checkmark\,$ Geodesics on the manifold of quantum states
- \checkmark Geodesics as non-Markovian physical evolutions
- $\checkmark\,$ Ideas of the proofs of Theorems 1 and 2
- Uhlmann holonomy

Uhlmann holonomy

- For a given purification $|\Psi\rangle$ $\in \mathcal{H} \otimes \mathcal{H}_A$ of ρ , let $\tau \in [0, \pi] \mapsto |\Psi_h^g(\tau)\rangle$ be a horizontal geodesic on $\mathcal{H} \otimes \mathcal{H}_A$ starting at $|\Psi\rangle$. (Uhlmann parallel transport).
- Given two ONB $\{|k\rangle\}_{k=1}^{n}$ of \mathcal{H} and $\{|\alpha_{l}\rangle\}_{l=1}^{n}$ of \mathcal{H}_{A} , let $\tau \mapsto |\Psi_{\text{ref}}^{g}(\tau)\rangle = \sqrt{\gamma_{g,V}(\tau)} \otimes \mathbb{1}_{A} \sum_{k=1}^{n} |k\rangle \otimes |\alpha_{k}\rangle$

be a *reference lift* of the geodesic $\gamma_{g,V}$ s.t. $|\Psi_{ref}^{g}(0)\rangle = |\Psi\rangle$.

• Uhlmann holonomy: unitary operator $U_A(t)$ on \mathcal{H}_A such that

$$|\Psi_{\rm h}^{\rm g}(\tau)\rangle = \mathbb{1} \otimes U_A(\tau) |\Psi_{\rm ref}^{\rm g}(\tau)\rangle$$

Uhlmann phase of geodesics

- Let $U_{\sigma\rho}$ be the unitary operator in the polar decomposition $\sqrt{\sigma}\sqrt{\rho} = U_{\sigma\rho}\Lambda_{\sigma\rho}$, $\Lambda_{\sigma\rho} = |\sqrt{\sigma}\sqrt{\rho}|$. Then $U_A(\tau) = (U_{\gamma_g(\tau)\rho}V)^T$ V = unitary defining the geodesic, $O^T = \sum_{k,l} \langle l|O|k \rangle |\alpha_k \rangle \langle \alpha_l|$
- Uhlmann geometric phase: $\phi_U(\tau) = \arg \langle \Psi | \Psi_h^g(\tau) \rangle$ (independent of the purification $|\Psi\rangle$ of ρ). One finds

$$\phi_{\mathrm{U}}(\tau) = \mathrm{tr}(\Lambda_{\gamma_{\mathrm{g}}(\tau)\rho}V) = \begin{cases} 0 & \text{ if } 0 \leqslant \tau < \pi/2 \\ \pi & \text{ if } \pi/2 < \tau \leqslant \pi. \end{cases}$$

 \hookrightarrow topological kick at $\tau = \pi/2$, i.e. when $|\Psi_{\rm h}^{\rm g}(\tau)\rangle \perp |\Psi\rangle$.

• In particular, the Uhlmann phase of any closed geodesic is non-trivial, $\phi_{\rm U}(\pi) = \pi$. Indeed, $|\Psi_{\rm h}^{\rm g}(k\pi)\rangle = (-1)^k |\Psi\rangle$, k = 1, 2.

- $\checkmark\,$ Geodesics on the manifold of quantum states
- $\checkmark\,$ Geodesics as non-Markovian physical evolutions
- $\checkmark\,$ Ideas of the proofs of Theorems 1 and 2 $\,$
- \checkmark Uhlmann holonomy
- Conclusions & perspectives

Conclusions

- Explicit form of the Bures geodesics on the manifold of quantum states
 - \hookrightarrow generalizes previous works by
 - A. Ericsson and H.N. Barnum.
 - \hookrightarrow relies on the theory of Riemannian submersions.

- The geodesics can be realized as physical evolutions of the system coupled to an ancilla
 - \hookrightarrow can be simulated in experiments and quantum computers!
- ▷ The Uhlmann phase of closed geodesics is non trivial and exhibits a topological kick.
 - $\leftrightarrow \text{ the shortest geodesic arc between} \\ 2 \text{ invertible states, which does not} \\ \text{ intersect } \partial \mathcal{E}_{\mathcal{H}}, \text{ has a trivial phase.} \end{cases}$

THANK YOU FOR YOUR ATTENTION!

Why are Bures geodesics interesting?

- ★ Applications to quantum metrology: Estimate some unknown parameter(s) φ from measurements on the output state of a φ-dependent quantum channel.
 → Bures metric g_B(φ, φ) = Quantum Fisher Information giving the best possible precision in the estimation.
- ★ Applications to quantum control: Steering an initial state to a target state using a given time-dependent Hamiltonian / Liouvillian depending on some control parameters.
- ★ Relation with the **Quantum speed limit**.

