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Observables in Physics

There are several relevant physical quantities associated to a physical
system that can be measured in experiments.

Examples: Energy, momentum, position, kinetic energy, potential energy,
force, Hamiltonian, Lagrangian, temperature, pressure...

In classical mechanics, these observable quantities are described by
continuous functions (x , p) 7→ f (x , p).

In quantum mechanics, they are described by (bounded) self-adjoint
operators in a Hilbert space A : H → H.

Both of these objects are examples of elements of C*-algebras.
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Some context

The quantum nature of a physical system is encoded in the Canonical
Commutation Relations (CCR) of position (q) and momentum (p):

[q, p] = i ℏ 1.

More abstractly: The C ∗-algebraic formulation of QM encodes the
CCR’s in the Weyl C ∗-algebra W .

Usual setting of QM in L2(Rd): Schrödinger representation of W .

Stone-Von Neumann: any regular irreducible representation of W is
unitarily equivalent to the Schrödinger representation.

Most times this is seen as enough.
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Some context

In this sense, W usually amounts to a stepping stone to the
“analytical” Schrödinger quantum mechanics.

It is not “big enough” of a setting: no spectral theorems and many
Hamiltonian evolutions do not preserve it [FV]1.

Hence, one usually works in the enveloping von Neumann algebra
ρ(W )′′ associated to a representation ρ of W .

Since W is simple, any state of ρ(W )′′ restricts to a state of W .

Any classification of the states of W provides a classification of the
states of ρ(W )′′, corresponding to the extendable states of ρ(W ).

1Fannes, M.; Verbeure, A.: On the time evolution automorphisms of the
CCR-algebra for quantum mechanics. Commun. math. Phys. 35, 257-264 (1974)
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States

Let A be a unital C ∗-algebra.

Definition 1 (State)

A linear functional ω on A is said to be positive if ω(a∗a) ≥ 0, ∀a ∈ A .
A positive, normalized linear functional is called a state, which is called
pure if it cannot be written as a convex linear combination of other states.

Examples.

Let A ⊂ B(H) and Ψ ∈ H. Then ωΨ(a) := ⟨Ψ, aΨ⟩H is a state.

Let X be a compact Hausdorff topological space, and A = C (X ).
Then any regular Borel measure µ on X defines a state via
ωµ(a) :=

∫
X a(x) dx . These are all the states.

In the previous example, the states ωδy (a) = a(y) are the pure states
of C (X ).
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State Space

The set of states of A will be denoted with SA . The subset of pure states
is denoted with PA .

The space SA is given the weak-∗ topology. Net convergence is given by

ωi → ω ⇐⇒ ωi (a) → ω(a) , ∀a ∈ A .

With this, SA becomes a compact Hausdorff space.

The choice of the weak-∗ topology has a physical basis: we want two
states ω1, ω2 to be close together iff measuring any observable in these
states yields similar values, i.e., ω1(a) is close to ω2(a) for any a ∈ A .
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Equivalence of States

We need a topological notion of equivalence of states.

Definition 2 (Equivalence of states)

Given a subset K ⊆ SA we will say that two states ω0, ω1 ∈ K are
equivalent (inside K) if there exists a continuous map [0, 1] ∋ t 7→ ωt ∈ K
joining ω0 and ω1. We denote the equivalence classes of K by Ω(K).

Physically, this condition is meant to reflect the absence of a phase change
between both states.

Two states being equivalent on K does not equate to them being
equivalent on bigger or smaller subspaces of SA .
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Weyl C*-algebra

The Weyl algebra (CCR algebra) W0 is the algebra generated by the
elements uα, vβ, α, β ∈ Rd with product laws given by:

uαvβ = e iα·β vβuα , uαuα′ = uα+α′ , vβvβ′ = vβ+β′

We may define a ∗-involution by u∗α = u−α, v
∗
β = v−β, and there is a

unique norm ∥ · ∥ on W0 satisfying the C* condition2.

Taking the norm closure of the Weyl algebra, we obtain the Weyl
C*-algebra W .

2Manuceau, J.; Sirugue, M.; Testard, D.; Verbeure, A.: The Smallest C∗-Algebra for
Canonical Commutations Relations
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Regularity

Definition 3

A state ω ∈ SW is called regular if both α 7→ ω(uαvβ) and β 7→ ω(uαvβ)
are continuous functions Rd → C, and semi-regular if only one is.

Theorem 4 (Stone - Von Neumann)

All GNS representations of pure regular states of the Weyl C*-algebra are
unitarily equivalent to the Schrödinger representation.

During this talk we will deal exclusively with β-regular states.
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Translation symmetries

The Weyl C ∗-algebra can be endowed with several groups of symmetries.

We will deal with symmetries given by the group of space translations, its
(strongly continuous) action given by Rd ∋ λ 7→ τλ ∈ Aut(W ) ,

τλ(a) := vλav
∗
λ , a ∈ W .

Specifically, in this talk we will focus on a discrete subgroup Γ ⊂ Rd of
translations as our group of symmetries, implemented by τγ , γ ∈ Γ.
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The symmetries: lattice translations

In our case, the symmetries consist of translations by a lattice Γ ≃ Zd with
l.i. basis vectors (i.e., group generators) {ej}dj=1 ⊂ Rd , i.e.,

Γ := {γ ∈ Rd | γ := γ1e
1 + . . .+ γde

d , γ1, . . . , γd ∈ Z} ≃ Zd .

Bidimensinal picturization (Wikimedia Commons):
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Dual lattice and Brillouin zone

Γ has an associated dual lattice

Γ′ := {γ′ ∈ Rd | γ′ · γ ∈ 2πZ , ∀ γ ∈ Γ} ≃ Zd .

It coincides with the lattice generated by the dual basis {f1, . . . , fd}
defined by fi · ej = 2πδi ,j . With this, we define the Brillouin zone

BΓ := Rd/Γ′ ≃ Td .

Γ′ has an associated unit cell

QΓ′ := {y ∈ Rd | y = y1f
1 + . . .+ yd f

d , y1, . . . , yd ∈ [0, 1)} ,

There is a bijection between QΓ′ and BΓ.
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The symmetries

We consider the action of Γ on W to be τγ(a) = vγav
∗
γ .

Definition 5 (Lattice invariant states)

A state ω ∈ SW is Γ-invariant (ΓI) if ω ◦ τγ = ω for all γ ∈ Γ. The set of
ΓI states will be denoted with SΓ

W , and the subset of pure ΓI states with
PΓ

W := SΓ
W ∩ PW .

We also define the space of pure, Γ-invariant, β-regular states:

PΓ,β
W := {ω ∈ PΓ

W | ω is semi-regular in the parameter β}
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Concrete representation

Let hΓ := L2(Rd/Γ, dν), with dν the normalized Haar measure on Rd/Γ.

Consider the two families of operators on hΓ defined by

(Sβf )(y) := f (y − β)

(Fγ′f )(y) := e i γ
′·y f (y)

(1)

for every γ′ ∈ Γ′ and β ∈ Rd . They satisfy

Fγ′Sβ = e i γ
′·β SβFγ′ , Fγ′Fη′ = Fγ′+η′ , SβSσ = Sβ+σ .
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Lattice-invariant states

Let G1(hΓ) be the set of 1-dimensional projections of hΓ.

Proposition 1 (Bloch-wave states [BMPS], Theorem 3.13)

Every element of PΓ,β
W is of the form

ω(κ,P)(uαvβ) := χΓ′(α) e− iκ·β TrhΓ(PFαSβ) (2)

where (κ,P) ∈ QΓ′ × G1(hΓ). This correspondence is bijective.
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Covariance property

One cannot replace κ ∈ QΓ′ by [κ] ∈ BΓ:

ω(κ+γ′,P) ̸= ω(κ,P)

In fact, introducing the family of automorphisms

λγ′(A) := Fγ′AF ∗
γ′ , A ∈ B(hΓ) ,

one gets
ω(κ+γ′,P) = ω(κ,λγ′ (P)). (3)
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The Grassmann bundle

Let wG1(hΓ) be G1(hΓ) equipped with the WOT.

We endow Rd × wG1(hΓ) with the Γ′-action (x ,P) 7→ (x + γ′, λ−γ′(P))
and define the orbit space

Gr1 :=
(
Rd × wG1(hΓ)

)
/Γ′.

This space has the structure of a Grassmann bundle of rank 1, with base
space BΓ and typical fibre wG1(hΓ). It is in fact trivial:

Gr1 ≃ BΓ × wG1(hΓ)

We denote the orbit of a point (x ,P) by [x ,P]Γ′ .
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Topology of Γ-invariant states

Any (k ,P) ∈ Rd × G1(hΓ) defines an element ω(k,P) ∈ PΓ,β
W via

ω(k,P)(uαvβ) := χΓ′(α) e− i k·β TrhΓ(PFαSβ) , (4)

and ω(k,P) = ω
(k̃,P̃)

⇐⇒ [k,P]Γ′ = [k̃ , P̃]Γ′ in Gr1.

Theorem 6 (De Nittis - R., 2024)

The prescription (4) provides an homeomorphism

Φ : Gr1 −→ PΓ,β
W .

As a consequence Ω(PΓ,β
W ) = {[ω0]} is a singleton.
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States from sections

Let π : Gr1 → BΓ be the Grassmann bundle mentioned before. Denote by
Sec(Gr1) the set of continuous sections of Gr1, i.e. the set of
F : BΓ → Gr1 such that (π ◦ F )(κ) = κ for every κ ∈ BΓ.

Consider the homeomorphism Φ : Gr1 −→ PΓ,β
W . For every F ∈ Sec(Gr1)

the composition ΦF := Φ ◦ F is a continuous map

ΦF : BΓ → PΓ,β
W .

For every κ ∈ BΓ, ωF (κ) := ΦF (κ) is an element of PΓ,β
W .
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Non-degenerated gapped states

We now define a topologically richer family of states.

Definition 7 (Non-degenerated gapped states)

Let F ∈ Sec(Gr1) be a section, µ the normalized Haar measure on BΓ and
ρ ∈ L1(BΓ, µ) a positive and L1-normalized function. The state

ωF ,ρ :=

∫
BΓ

dµ(κ) ρ(κ)ωF (κ)

is called the non-degenerated gapped state with section F and distribution
ρ. The set of non-degenerated gapped states is denoted with GΓ

W ,1.
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Topological content of non-degenerated gapped states

Let [X ,Y ] denote the homotopy equivalence classes of functions X → Y .

Lemma 8 (modulo one detail left to prove)

There is a bijection
Ω(GΓ

W ,1) ≃ [BΓ,Gr1] .

Let Hn(X ,Z) denote the n-th cohomology group of the space X with
integer coefficients.

Theorem 9 (De Nittis - R., 2024)

There are bijective correspondences

Ω(GΓ
W ,1) ≃ H2(BΓ,Z) ≃

{
0 if d = 1

Z⊕(d2) if d ⩾ 2 .
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Relation with vector bundles and K -theory

From the proof of the last Theorem, it also follows that

Ω(GΓ
W ,1) ≃ Vec1C(BΓ)

where Vec1C(X ) denotes the set of isomorphism classes of complex line
bundles over X .

In this sense the bijection between Ω(GΓ
W ,1) and H2(BΓ,Z) described in

Theorem 9 can be thought in terms of Chern classes as in the standard
theory of classification of line bundles:

Vec1C(BΓ) ≃ [BΓ,K (Z, 2)]
c1≃ H2(BΓ,Z)

where the map c1 which provides the bijection (indeed a group
isomorphism) is known as the first Chern class. Moreover, if 1 ≤ d ≤ 3,

Ω(GΓ
W ,1) ≃ K̃ 0(BΓ).
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Generic gapped states

Let GrN be the Grassmann bundle of rank N obtained just as Gr1 by
replacing wG1(hΓ) with

wGN(hΓ).

Definition 10 (Degenerated gapped states)

Let F ∈ Sec(GrN) be a section and ρ ∈ L1(BΓ, µ) a positive and
L1-normalized function. The state defined by

ωF ,ρ :=

∫
BΓ

dµ(κ)
ρ(κ)

N
ωF (κ)

will be called the N-degenerated gapped state with section F and
distribution ρ. The set of these states will be denoted with GΓ

W ,N .
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Topology of gapped states

Theorem 11 (De Nittis - R., 2024)

There is a bijective correspondence

Ω(GΓ
W ,N) ≃ VecNC (BΓ) .
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K-theoretical classification in low dimension

Let N ∈ N. When 1 ≤ d ≤ 3, a standard result in the theory of vector
bundles provides VecNC (BΓ) ≃ Vec1C(BΓ). As a consequence,

Ω(GΓ
W ,N) ≃ Ω(GΓ

W ,1) , if 1 ≤ d ≤ 3 .

For d = 4 one knows that VecNC (BΓ) is described by the second and fourth
cohomology groups. Therefore

Ω(GΓ
W ,N) ≃ H2(BΓ,Z)⊕ H4(BΓ,Z) ≃ Z⊕7 , if d = 4 .

In both cases one gets

Ω(GΓ
W ,N) ≃ K̃ 0(BΓ) , if 1 ≤ d ≤ 4 ,

showing the generality of K -theory in the classification of gapped states.
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What we have obtained

We defined a notion of topological equivalence of states, and showed
the topological triviality of many classes of them.

Using this notion we managed to recover the topological structures
present in gapped states, such as their relation with complex vector
bundles over the Brillouin zone BΓ.

We showed that the reduced K -theory K̃ 0(BΓ) classifies the gapped
states in low dimension.

Finally, throughout this work we set the framework for an even more
general topological classification of states.
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What is next? The ideas

Thermal states: Having classified the gapped states which are
parametrized by GrN :=

(
Rd × wGN(hΓ)

)
/Γ′, we may classify

families of states where wGN(hΓ) is replaced by an appropriate set of
trace-class operators.

Non-regular Γ-invariant states: We focused our discussion in the case
of β-regular states, but there is plenty more than these, albeit more
pathological. We have succeeded on obtaining and classifying other
classes of interesting states, but there is much more to be done.

Infinite degrees of freedom? Topological invariants in GNS
representations? Many more angles to explore!
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Thanks!

Thank you for your attention!
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