Edge modes at soft walls.

Hanne Van Den Bosch

Universidad de Chile & Center for Mathematical Modeling

Joint work with C. Gomez, D. Gontier

- Bulk models, band structure, Bloch transforms.
- Edges and soft walls.
- The spectral flow argument.
- Results for the Wallace model.

The Su-Schrieffer-Heeger (SSH) model - tight binding

Continuum model:

Tight-Binding model:

$$H = J_2 \sum_{j \text{ even}} |j\rangle \langle j+1| + J_1 \sum_{j \text{ odd}} |j\rangle \langle j+1| + \mathsf{h. c.} \ , \quad \mathcal{H} = \ell^2(\mathbb{Z})$$

The SSH model - periodic version

Take a unit cell with two atoms: $\mathcal{H}=\ell^2(\mathbb{Z},\mathbb{C}^2)$

$$(\tilde{H}\Psi)_n := a_{n-1}^* \Psi_{n-1} + b_n \Psi_n + a_n \Psi_{n+1},$$
 with $b = \begin{pmatrix} 0 & J_1 \\ J_1^* & 0 \end{pmatrix}$ and $a = \begin{pmatrix} 0 & 0 \\ J_2 & 0 \end{pmatrix}.$

The SSH model -Bloch transform

Any $\Psi\in \mathcal{H}=\ell^2(\mathbb{Z},\mathbb{C}^2)$ can be seen as Fourier coefficient of a periodic function

$$\left(\mathcal{F}[\Psi]\right)(k) := \frac{1}{\sqrt{2\pi}} \sum_{m \in \mathbb{Z}} \Psi_m e^{-ikm} \in L^2([-\pi, \pi), \mathbb{C}^2).$$

The SSH model -Bloch transform

Any $\Psi\in \mathcal{H}=\ell^2(\mathbb{Z},\mathbb{C}^2)$ can be seen as Fourier coefficient of a periodic function

$$\left(\mathcal{F}[\Psi]\right)(k) := \frac{1}{\sqrt{2\pi}} \sum_{m \in \mathbb{Z}} \Psi_m e^{-ikm} \in L^2([-\pi, \pi), \mathbb{C}^2).$$

And ${\mathcal F}$ is a unitary transformation that diagonalizes \widetilde{H}

$$\left(\mathcal{F}\widetilde{H}\mathcal{F}^*u\right)(k) = \widetilde{H}_k u(k), \quad \text{with} \qquad \widetilde{H}_k := a^* e^{-ik} + b + a e^{ik}.$$

The SSH model - Bulk Spectrum

Explicitely,

$$\widetilde{H}_k = b + ae^{ik} + a^* e^{-ik} = \begin{pmatrix} 0 & J_1 + J_2 e^{-ik} \\ J_1 + J_2 e^{ik} & 0 \end{pmatrix}.$$

Bulk bands in general

Generalizations

- More atoms per unit cell $\rightarrow \ell^2(\mathbb{Z}, \mathbb{C}^N)$
- Include magnetic fields \rightarrow complex hopping coefficients
- Interactions between second neighbor cells and beyond
- Dimension $2 \to \ell^2(\mathbb{Z}^2, \mathbb{C}^N)$

In all cases

- There are N bands
- They correspond to essential spectrum
- Describe transport and dispersion in the bulk material

 ${\rm Half-line}: \ H \ {\rm en} \ \ell^2(\mathbb{N},\mathbb{C}^2): \ {\rm solve} \ H\Psi=0$

$$H = \begin{pmatrix} 0 & J_1 & & \\ J_1 & 0 & J_2 & & \\ & J_2 & 0 & J_1 & \\ & & J_1 & 0 & \ddots \\ & & & \ddots & \ddots \end{pmatrix}$$

 ${\rm Half\text{-}line}:\,H\,\,{\rm en}\,\,\ell^2(\mathbb{N},\mathbb{C}^2):\,{\rm solve}\,\,H\Psi=0$

$$H = \begin{pmatrix} 0 & J_1 & & & \\ J_1 & 0 & J_2 & & \\ & J_2 & 0 & J_1 & \\ & & J_1 & 0 & \ddots \\ & & & \ddots & \ddots \end{pmatrix} \qquad \begin{cases} \Psi_{2n} = 0 \\ \Psi_{2n+1} = (-J_1/J_2)^n \Psi_1 \end{cases}$$

 ${\rm Half\text{-}line}:\,H\,\,{\rm en}\,\,\ell^2(\mathbb{N},\mathbb{C}^2):\,{\rm solve}\,\,H\Psi=0$

$$H = \begin{pmatrix} 0 & J_1 & & & \\ J_1 & 0 & J_2 & & \\ & J_2 & 0 & J_1 & \\ & & J_1 & 0 & \ddots \\ & & & \ddots & \ddots \end{pmatrix} \qquad \begin{cases} \Psi_{2n} = 0 \\ \Psi_{2n+1} = (-J_1/J_2)^n \Psi_1 \end{cases}$$

Edge modes at zero energy...Majorana fermions ?

Soft walls

f is Lipschitz if $|f(x) - f(y)| \le L|x - y|$ Wall potential $w : \mathbb{R} \mapsto \mathbb{R}$ is • Lipschitz-continuous • As $x \to -\infty$, $w(x) \to +\infty$

• As
$$x \to +\infty$$
, $w(x) \to 0$

Plot $\sigma(H^{\sharp}(t))$: numerics with $w = -\nu[x]_{-}$ for $\nu = 1, 5, 10$.

Plot $\sigma(H^{\sharp}(t))$: numerics with $w = -\nu[x]_{-}$ for $\nu = 1, 5, 10$.

Observations

• $t\mapsto \sigma(H^{\sharp}(t))$ is periodic

Plot $\sigma(H^{\sharp}(t))$: numerics with $w = -\nu[x]_{-}$ for $\nu = 1, 5, 10$.

Observations

- $t \mapsto \sigma(H^{\sharp}(t))$ is periodic
- $\sigma_{\rm ess}(H^{\sharp}(t)) = \sigma_{\rm bulk}$

Plot $\sigma(H^{\sharp}(t))$: numerics with $w = -\nu[x]_{-}$ for $\nu = 1, 5, 10$.

Observations

- $t \mapsto \sigma(H^{\sharp}(t))$ is periodic
- $\sigma_{\rm ess}(H^{\sharp}(t)) = \sigma_{\rm bulk}$
- Edge modes depend on ν

Plot $\sigma(H^{\sharp}(t))$: numerics for $J_1=3/2,~J_2=1/2,$ with $w=-\nu[x]_-$ for $\nu=1,5,10.$

Theorem

If w is Lipschitz with constant L and there is a gap above the N-th band of width $\ell > L$, then $\sigma(H_t)$ has at least $\mathcal{N}\lfloor l/L \rfloor$ eigenvalues in this gap.

Spectral flow

Definition

 $Sf(A_t, E, [0, 1]) =$ the number of eigenvalues branches that cross E downwards as t increases from 0 to 1.

Spectral flow

Theorem

For E in a bulk gap, such that there are $\mathcal{N}(E)$ bands below E, we have $\mathrm{Sf}(H_t^\sharp,E,[0,1])=-\mathcal{N}(E).$

Spectral flow

Theorem

For E in a bulk gap, such that there are $\mathcal{N}(E)$ bands below E, we have $\mathrm{Sf}(H_t^\sharp,E,[0,1])=-\mathcal{N}(E).$

Sketch of the proof t=o t=o 1-1 1.1 Diolocated model Steep - Wall-model

For two-dimensional materials: The Wallace model

The Wallace model with a zigzag wall

The Wallace model with a rational cut

General conclusions

• Edge states occur in many situations.

- Edge states occur in many situations.
- A slowly varying potential gives more edge states

- Edge states occur in many situations.
- A slowly varying potential gives more edge states
- For a wall in d = 2 parallel to $n\mathbf{a}_1 + m\mathbf{a}_2$, the gaps fill as n, m increase

Muchas gracias !