
Calculus of variations for curves and surfaces - Problems

October 14, 2019

1 Geodesics and energy

Let N ⊂ RN be an isometrically immersed Riemannian manifold. If z ∈ N and TzN is the tangent
space to N at z, then we define the symmetric N ×N -matrix field PT over N such that

z ∈ N 7→ PT (z) ∈ SymN×N (R), the matrix of the orthogonal projection RN → TzN .

Problem 1.1. Prove that if γ : S1 → N is a closed curve such that for all W : S1 → RN such that
W (θ) ∈ Tγ(θ)N for each θ there holds ∫

W · ∂
2γ

∂θ2
dθ = 0,

then γ satisfies the equation ∂2θγ + ∂θ (PT ◦ γ) ∂θγ = 0, or more precisely, for each i = 1, . . . , N if
γi is the i-th coordinate of γ, there holds

∂2θγ
i(θ) +

N∑
j=1

∂θ

(
P ijT (γ(θ))

)
∂θγ

j(θ) = 0, ∀θ ∈ S1.

Problem 1.2. Prove that γ is a geodesic in constant-speed parameterization (i.e. such that |∂θγ|
is constant along S1), if and only if γ is a critical point of the functional E(γ) :=

∫
S1 |∂θγ|

2dγ
under perturbations within N . More precisely, the latter means that

d

dt
E (πN (γ + tV ))|t=0 = 0,

forall V a vector field in C∞(S1,RN ), and where πN is the projection onto N , which is well-defined
over a small neighborhood of N in RN .

Hints:

• Use the result of the previous problem. Also note that dπN (z) = PT (z) for all z ∈ N . Then
use the chain rule together with the above expression of the critical point condition for E .

• Justify and use the pointwise calculation〈
∂θγ(θ), PT (γ(θ))∂2θγ(θ)

〉
=
〈
PT (γ(θ))∂θγ(θ), ∂2θγ(θ)

〉
=
〈
∂θγ(θ), ∂2θγ(θ)

〉
,

in order to find that ∂θ|∂θγ|2 ≡ 0.
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2 Birkhoff curve-shortening process

Fix a large Q ∈ N and fix a compact submanifold N ⊂ RN . We define the subspace

ΛQ := {γ : S1 → N : ∃x1, . . . , xQ ∈ S1, ∀i, γ[xi,xi+1] geodesic} ⊂W 1,2(S1,N ),

where we define xQ+1 := x1. Let also GQ ⊂ ΛQ be the set of immersed closed geodesics in M with
length at most 2πQ.

Birkhoff’s curve-shortening map Ψ : ΛQ → ΛQ is defined as follows:

• For γ ∈ ΛQ, fix x0, . . . , x2Q = x0 ∈ S1.

• For Ik := [x2k, x2k+2] replace γ|Ik by the shortest geodesic from γ(x2k) to γ(x2(k+1)). Repeat

this for k = 0, . . . , Q− 1, obtaining a curve γ(1) ∈ ΛQ

• For Jk := [x2k+1, x2k+3], replace γ(1)|Jk by the shortest geodesic from γ(1)(x2k+1) to γ(1)(x2k+3).
Repeating this for k = 0, . . . , Q− 1 gives a curve γ(2) ∈ ΛQ.

• Reparameterize γ(2) by arclength, fixing γ(2)(x0), and define Ψ(γ) to be the resulting curve.

Problem 2.1. Prove the following properties of the map Ψ defined above:

1. (Continuity) Ψ is continuous with respect to the W 1,2(S1,N ) topology.

2. (Curve shortening property) Ψ(γ) is homotopic to γ and L(Ψ(γ)) ≤ L(γ), where L :
ΛQ → R+ is the length function.

3. (W 1,2-distance bound) There exists a continuous φ : [0,∞) → [0,∞) such that φ(0) = 0
and

dist2W 1,2(γ,Ψ(γ)) ≤ φ
(
L(γ)2

L(Ψ(γ))2
− 1

)
.

4. (Strict shortening for distant curves) For each ε > 0 there exists δ > 0 such that if
distW 1,2(γ,GQ) ≥ ε

Hints: We suggest to work at each step with constant speed curves (i.e. change coordinates

by s : S1 → S1 such that the curve γ̃ given by γ̃(s(t)) = γ(t) has speed |γ̃′| = L(γ)
2π ).

1. It suffices to consider only the W 1,2-continuity of the first operation in the definition of Ψ,
i.e. the substitution over all intervals Ik.

• Prove Wirtinger’s inequality: for f ∈ W 1,2([0, Q],N ) with f(0) = f(Q), there holds∫ Q
0 |f |

2 dt ≤ (Q/2π)2
∫ Q
0 |f

′|2 dt. (Prove this first for Q = 1 and first for N = Rn, and
then apply modifications for the case of general N .)

• Use Wirtinger’s inequality at each step, applied to suitable f , to prove that if γ, γ̄ are
close in W 1,2, then γ(1), γ̄(1) are also close.

2. Construct an explicit homotopy by taking the geodesic arcs in N between γ(x) and Ψ(γ)(x).
Use the triangle inequality.

3. A proof could go through the following steps
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• Prove the following claim: For I an interval of length ≤ 2π/L and σ1 :→ N Lipschitz
curve with speed |σ′1| ≤ L, if σ2 : I → N is a minimizing geodesic with the same
endpoints as σ1, prove

dist2W 1,2(σ1, σ2) ≤ C(E(σ1)− E(σ2)), where E(γ) :=

∫
S1
|γ′|2 dθ.

For this, use again Wirtinger in order to reduce to estimating
∫
|(σ1−σ2)′|2. Then justify

the following computations, valid for suitable C,C ′ depending on N , and where v⊥ is v’s
normal component to N :∫
|σ′1|2 −

∫
|σ′2|2 −

∫
|(σ1 − σ2)′|2 = −2

∫
〈σ1 − σ2, σ′′2〉

≤ C

∫
|(σ1 − σ2)⊥||σ′2| ≤ C

∫
|σ1 − σ2|2

∫
|σ′2|2

≤ C ′
∫
|σ1 − σ2|2.

The last term can be estimated by the L2-norm of (σ1 − σ2)′ by Wirtinger again.

• Prove that L(γ)2 ≤ 2E(γ), with equality if |γ′| is constant. Then apply this to compare
the changes of length before and after the substitutions by geodesic segments applied
for constructing Ψ(γ), to the W 1,2-distance of γ,Ψ(γ). Do the estimates for each Ik
separately and then repeat for the Jk.

• The final estimate should hold for φ(z) = z +
√
z.

4. The last point can be proved by contradiction: if a sequence γj satisfies distW 1,2(γj , G) ≥ ε > 0
but E(Ψ(γj)) ≥ E(γj)− 1/j, prove that up to subsequence, γj → γ with γ ∈ Λ and Ψ(γ) = γ,
and reach a contradiction with this.

Problem 2.2. Prove Fenchel’s theorem:

If γ : S1 → Rm is a closed curve and d`γ is the arclength measure over γ and κ is its curvature,
then ∫

S1
|κ|d`γ ≥ 2π.

3 Stone’s theorem, Hausdorff, paracompact and normal spaces

Problem 3.1. Prove that every metric space is paracompact (Stone’s theorem).

Problem 3.2. Prove that every Hausdorff paracompact space is normal (Prop. I.1 of the course).

Problem 3.3. Let M be a paracompact Banach manifold and φ a chart for M mapping an open
set O ⊂ M homeomorphically onto a Banach space V . Show by a counterexample that if B is a
closed ball in V then φ−1(B) needs not be closed in M.

Hint: If `2 is the Hilbert space of all real-valued sequences x = (x1, x2, . . .) such that ‖x‖`2 :=∑
|xk|2 < ∞, then there exists a C∞ diffeomorphism φ : `2 \ {0} → `2 which equals the iden-

tity outside the unit ball (result due to C. Bessaga, ”Every infinite dimensional Hilbert space is
diffeomorphic with its unit sphere”, Bull. Acad. Polon. Sci., 14 (1966), 27-31).
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4 Finsler manifolds

Problem 4.1. Prove Theorem I.2 of the course. Namely, if (M, ‖ · ‖) is a Finsler manifold and
we define a “minimum-length distance” (the Palais distance) between p, q ∈M by

d(p, q) := inf

{∫ 1

0
‖ω′(t)‖ω(t)dt : ω ∈ C1([0, 1],M), ω(0) = p, ω(1) = q

}
,

then d defines a distance over M and as a metric space (M, d) has a topology equivalent with the
Banach manifold topology of M.

Hints:

1. Prove that ifM is a Banach manifold, φ : U → V is a chart forM and ‖ · ‖ is a norm for V ,
then let

B(x0, r) := {x ∈ U : ‖φ(x)− φ(x0)‖ ≤ r},
B(x0, r) := {x ∈ U : ‖φ(x)− φ(x0)‖ < r},
S(x0, r) := {x ∈ U : ‖φ(x)− φ(x0)‖ = r}.

then for r > 0 small enough B(x0, r) is a closed neighborhood of x0 in M , of which B(x0, r)
is the interior and S(x0, r) is the boundary relative to M , and S(x0, r) separates B(x0, r)
from M\ B(x0, r) in the sense that any continuous path between these two sets must cross
S(x0, r).

2. In a chart as in the previous point, use the continuity of the Finsler norm and the fact that
the Palais distance convergence can be tested by sequences of paths, to conclude.

5 Geometric Banach and Finsler manifolds, Palais-Smale condi-
tion

Let Σ,N are manifolds of dimensions k,m respectively, with N isometrically embedded into RN .
In general, the Sobolev space W 1,p(Σ,N ) may be defined based on the fact that W 1,p(Σ,RN ) is a
well-defined Banach space, and thus we can write

W 1,p(Σ,N ) := W 1,p(Σ,RN ) ∩ {φ : φ(x) ∈ N for a.e. x ∈ Σ}.

But in certain cases we may equivalently define W 1,p(Σ,N ) chart by chart, using the manifold
structure of Σ,N . In particular, we can do this whenever W 1,p(Rk,RN ) embeds continuously into
C0(Rk,RN ). This condition is ensured by the Sobolev embedding theorem if p > k.

Problem 5.1. • Show that W 1,2(S1,N ) has a Hilbert manifold structure.

• Let the Hilbert manifold M := W 1,2(S1,N ) be endowed with the scalar product associated to
the W 1,2-norm

‖w‖u := ‖w‖W 1,2 if w is a W 1,2-section of the pull-back bundle u−1(TN ).

Show that this defines a Finsler manifold structure over X. Show that X is complete with
respect to the Palais distance.

Problem 5.2. • Show that over W 1,2(S1,N ) the Dirichlet energy functional defined by E(γ) :=∫
S1 |∂θγ|

2dθ satisfies the Palais-Smale condition.
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• Show that the Dirichlet energy functional E(u) :=
∫
S2 |Du|

2 over the Hilbert space W 1,2(S2,R3)
does not satisfy the Palais-Smale condition.

Problem 5.3. Prove Proposition I.5 of the course: For p > 1, over M = W 2,p
imm(S1,N ) we have

defined a Finsler structure by

‖v‖pγ :=

∫
S1

(
|∇2v|2gγ + |∇v|2gγ + |v|2

)
d`gγ .

Prove that (M, ‖ · ‖) is complete with respect to the Palais distance.
Why do we need the assumption p > 1?

Hint: Think how to adapt the proof of Prop. I.4 to this case.

Problem 5.4. Prove that every C1-function over a Finsler manifold admits a pseudo-gradient.
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