EXERCISES

Geometrical aspects of spectral theory

16 October 2019

- 1. Show that every orthonormal sequence in a Hilbert space weakly converges to zero. (Recall that a sequence $\{\psi_n\}_{n\in\mathbb{N}}\subset\mathcal{H}$ is weakly converging to zero if $(\phi,\psi_n)\to 0$ for every $\phi \in \mathcal{H}$).
- 2. Study low-lying Dirichlet eigenvalues of the square.
 - (a) Determine the point spectrum of the Dirichlet Laplacian in the square of side π .
 - (b) Identify the first eleven lowest eigenvalues (counting multiplicities) and arrange them in a non-decreasing order.
 - (c) What is the highest multiplicity of these eigenvalues?
- 3. Study the case of **Neumann boundary conditions**, that is, consider the boundaryvalue problem

$$\begin{cases}
-\Delta \psi = \lambda \psi & \text{in } \Omega, \\
\frac{\partial \psi}{\partial n} = 0 & \text{on } \partial \Omega,
\end{cases}$$
(1)

where n denotes the outward unit normal vector field of $\partial\Omega$.

- (a) Find the eigenvalues and eigenfunctions if $\Omega := (0, a)$ is a segment of width a > 0.
- (b) Find the eigenvalues and eigenfunctions if $\Omega := (0,a) \times (0,b)$ is a rectangle of sides a and b.
- 4. Let $\Omega_1 \subset \Omega_2$ be bounded domains in \mathbb{R}^d and let $\{\lambda_k^D(\Omega_1)\}_{k=1}^{\infty}$ and $\{\lambda_k^D(\Omega_2)\}_{k=1}^{\infty}$ denote the eigenvalues of the Dirichlet Laplacian arranged in a non-decreasing sequence counting multiplicities. Using the variational formula for the ground-state energy and the trivial extension, we have seen that $\lambda_1^D(\Omega_1) \geq \lambda_1^D(\Omega_2)$. More generally, one has $\lambda_k^D(\Omega_1) \ge \lambda_k^D(\Omega_2)$ for every $k \ge 1$; this property is called the **monotonicity of Dirich**let eigenvalues (larger domain has smaller eigenvalues).

Find a counterexample to the monotonicity of Neumann eigenvalues. More specifically, find domains $\Omega_1 \subset \Omega_2$ such that $\lambda_k^N(\Omega_1) < \lambda_k^N(\Omega_2)$ for some $k \geq 1$. Hint 1: Notice that the lowest eigenvalue $\lambda_1^N(\Omega)$ is always zero for any domain Ω , so

you should look at k = 2 (or higher).

Hint 2: Consider inscribed rectangles.

5. Let Ω be a local deformation of the straight strip $\Omega_0 := \mathbb{R} \times (0,1)$ (that is, there exists a rectangle Q such that $\Omega \setminus Q = \Omega_0 \setminus Q$). Show that $[\pi^2, \infty) \subset \sigma(-\Delta_D^{\Omega})$. Hint: Show that the sequence formed by $\psi_n(x,y) := \varphi((x-n)/n)\sin(\pi y)$, where $\varphi \in C_0^2((0,\infty))$ is a suitably normalised function, is an approximate eigenfunction.

1