Santiago October 2019

Operator algebras: what are they good for ?

Exercise 1 (Unitization) Let \mathcal{A} be a Banach algebra, with norm $\|\cdot\|$, and consider $\tilde{\mathcal{A}} := \mathcal{A} \oplus \mathbb{C}$ as a vector space. On $\tilde{\mathcal{A}}$ we define the multiplication

$$(a,\lambda)(b,\mu) := (ab + \lambda b + \mu a, \lambda \mu).$$

Check that $\tilde{\mathcal{A}}$ is a unital algebra with unit (0,1). Check that the map $\mathcal{A} \ni a \mapsto (a,0) \in \mathcal{A}$ is an injective homomorphism, and that the image of this map is an ideal in $\tilde{\mathcal{A}}$. This allows us to identify \mathcal{A} as an ideal in $\tilde{\mathcal{A}}$.

We usually write $a + \lambda$ for (a, λ) . Check that the map $\tilde{\mathcal{A}} \ni a + \lambda \mapsto \lambda \in \mathbb{C}$ is a homomorphism with kernel \mathcal{A} . If we endow $\tilde{\mathcal{A}}$ with the map $\tilde{\mathcal{A}} \ni a + \lambda \mapsto ||a + \lambda|| := ||a|| + |\lambda| \in \mathbb{R}_+$, check that is a norm on $\tilde{\mathcal{A}}$.

Exercise 2 (Double centraliser) Consider a C^* -algebra \mathcal{A} and a pair (L, R) of bounded linear maps on \mathcal{A} satisfying for any $a, b \in \mathcal{A}$

$$L(ab) = L(a)b,$$
 $R(ab) = aR(b),$ $R(a)b = aL(b).$

Such a pair is called a double centraliser. For example, for any $c \in A$, the pair (L_c, R_c) with $L_c(a) = ca$ and $R_c(a) = ac$ is a double centralizer.

1) Check that ||L|| = ||R|| (you can use that $||a|| = \sup_{||b|| \le 1} ||ab|| = \sup_{||b|| \le 1} ||ba||$).

We denote the set of double centralizers by $M(\mathcal{A})$ and endow it with the norm ||(L,R)|| := ||L|| = ||R||. For (L_1, R_1) and (L_2, R_2) in $M(\mathcal{A})$ we define the product

$$(L_1, R_1)(L_2, R_2) := (L_1L_2, R_2R_1).$$

We also endow $M(\mathcal{A})$ with a map $*: (L, R) \mapsto (L, R)^* := (R^*, L^*)$ with $L^*(a) = (L(a^*))^*$ and similarly for R.

- 2) Show that $M(\mathcal{A})$ is a algebra with this multiplication,
- 3) Show that * defines an involution on $M(\mathcal{A})$,
- 4) Show that $M(\mathcal{A})$ with this multiplication, involution, and norm, is a unital C^{*}-algebra.

Observe that the map $\mathcal{A} \ni a \mapsto (L_a, R_a) \in M(\mathcal{A})$ is an isometric *-isomorphism, which allows us to identify \mathcal{A} with its image in $M(\mathcal{A})$. With this identification, \mathcal{A} becomes an ideal in $M(\mathcal{A})$.

Exercise 3 (The Grothendieck construction) In this exercise, we show how one can associate an Abelian group to every Abelian semigroup (in a way analogous to how one obtains \mathbb{Z} from \mathbb{N}).

Let (S, +) be an Abelian semigroup. Define a relation \sim on $S \times S$ by $(x_1, y_1) \sim (x_2, y_2)$ if there exists $z \in S$ with $x_1 + y_2 + z = x_2 + y_1 + z$.

1) Show that \sim is an equivalence relation on $S \times S$.

We write G(S) for $(S \times S)/\sim$, and let $\langle x, y \rangle$ denote the equivalence class in G(S) containing $(x, y) \in S \times S$. The operation

$$\langle x_1, y_1 \rangle + \langle x_2, y_2 \rangle = \langle x_1 + x_2, y_1 + y_2 \rangle$$

is well defined and turns (G(S), +) into an Abelian group. Note that $-\langle x, y \rangle = \langle y, x \rangle$, and $\langle x, x \rangle = 0$ for all $x, y \in S$. The group G(S) is called the Grothendieck group of S.

Fix $y \in S$ and consider the map $\gamma_S : S \ni x \mapsto \langle x + y, y \rangle \in G(S)$.

- 2) Show that γ_S is independent of the choice of y,
- 3) Show that $G(S) = \{\gamma_S(x) \gamma_S(y) \mid x, y \in S\},\$
- 4) Show that $\gamma_S(x) = \gamma_S(y)$ if and only if x + z = y + z for some $z \in S$,
- 5) Show that γ_S is injective if and only if S has the cancellation property, namely whenever x + z = y + z for $x, y, z \in S$ one has x = y.

Exercise 4 (Whitehead lemma) Let \mathcal{A} be a unital C^* -algebra, and let u, v be unitary elements in \mathcal{A} . Let us also denote by \sim_h the homotopy equivalence in the set $\mathcal{U}_2(\mathcal{A})$ (the set of unitary 2×2 matrices with entries in \mathcal{A}). Then

$$\begin{pmatrix} u & 0 \\ 0 & v \end{pmatrix} \sim_h \begin{pmatrix} uv & 0 \\ 0 & 1 \end{pmatrix} \sim_h \begin{pmatrix} vu & 0 \\ 0 & 1 \end{pmatrix} \sim_h \begin{pmatrix} v & 0 \\ 0 & u \end{pmatrix}.$$

In particular one has

$$\begin{pmatrix} u & 0 \\ 0 & u^* \end{pmatrix} \sim_h \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

For the proof, one can first show that $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \sim_h \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, and then use identities of the form:

$$\begin{pmatrix} u & 0 \\ 0 & v \end{pmatrix} = \begin{pmatrix} u & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

References

Master class lecture notes available on

Further reading

- R. Douglas, *Banach algebra techniques in operator theory*, Second edition, Graduate Texts in Mathematics **179**, Springer-Verlag, New York, 1998.
- G. Murphy, C*-algebras and operator theory, Academic Press, Inc., Boston, MA, 1990.
- H. Moriyoshi, T. Natsume, *Operator algebras and geometry*, Translations of Mathematical Monographs **237**, American Mathematical Society, Providence, RI, 2008.
- M. Roerdam, F. Larsen, N. Laustsen, An introduction to K-theory for C^{*}-algebras, London Mathematical Society Student Texts **49**, Cambridge University Press, Cambridge, 2000.