Operator algebras: what are they good for ?

Exercise 1 (Unitization) Let \mathcal{A} be a Banach algebra, with norm $\|\cdot\|$, and consider $\tilde{\mathcal{A}}:=\mathcal{A} \oplus \mathbb{C}$ as a vector space. On $\tilde{\mathcal{A}}$ we define the multiplication

$$
(a, \lambda)(b, \mu):=(a b+\lambda b+\mu a, \lambda \mu) .
$$

Check that $\tilde{\mathcal{A}}$ is a unital algebra with unit $(0,1)$. Check that the map $\mathcal{A} \ni a \mapsto(a, 0) \in \tilde{\mathcal{A}}$ is an injective homomorphism, and that the image of this map is an ideal in $\tilde{\mathcal{A}}$. This allows us to identify \mathcal{A} as an ideal in $\tilde{\mathcal{A}}$.

We usually write $a+\lambda$ for (a, λ). Check that the map $\tilde{\mathcal{A}} \ni a+\lambda \mapsto \lambda \in \mathbb{C}$ is a homomorphism with kernel \mathcal{A}. If we endow $\tilde{\mathcal{A}}$ with the map $\tilde{\mathcal{A}} \ni a+\lambda \mapsto\|a+\lambda\|:=\|a\|+|\lambda| \in \mathbb{R}_{+}$, check that is a norm on $\tilde{\mathcal{A}}$.

Exercise 2 (Double centraliser) Consider a C^{*}-algebra \mathcal{A} and a pair (L, R) of bounded linear maps on \mathcal{A} satisfying for any $a, b \in \mathcal{A}$

$$
L(a b)=L(a) b, \quad R(a b)=a R(b), \quad R(a) b=a L(b)
$$

Such a pair is called a double centraliser. For example, for any $c \in \mathcal{A}$, the pair $\left(L_{c}, R_{c}\right)$ with $L_{c}(a)=c a$ and $R_{c}(a)=$ ac is a double centralizer.

1) Check that $\|L\|=\|R\| \quad$ (you can use that $\left.\|a\|=\sup _{\|b\| \leq 1}\|a b\|=\sup _{\|b\| \leq 1}\|b a\|\right)$.

We denote the set of double centralizers by $M(\mathcal{A})$ and endow it with the norm $\|(L, R)\|:=\|L\|=\|R\|$. For $\left(L_{1}, R_{1}\right)$ and $\left(L_{2}, R_{2}\right)$ in $M(\mathcal{A})$ we define the product

$$
\left(L_{1}, R_{1}\right)\left(L_{2}, R_{2}\right):=\left(L_{1} L_{2}, R_{2} R_{1}\right)
$$

We also endow $M(\mathcal{A})$ with a map $*:(L, R) \mapsto(L, R)^{*}:=\left(R^{*}, L^{*}\right)$ with $L^{*}(a)=\left(L\left(a^{*}\right)\right)^{*}$ and similarly for R.
2) Show that $M(\mathcal{A})$ is a algebra with this multiplication,
3) Show that * defines an involution on $M(\mathcal{A})$,
4) Show that $M(\mathcal{A})$ with this multiplication, involution, and norm, is a unital C^{*}-algebra.

Observe that the map $\mathcal{A} \ni a \mapsto\left(L_{a}, R_{a}\right) \in M(\mathcal{A})$ is an isometric $*$-isomorphism, which allows us to identify \mathcal{A} with its image in $M(\mathcal{A})$. With this identification, \mathcal{A} becomes an ideal in $M(\mathcal{A})$.

Exercise 3 (The Grothendieck construction) In this exercise, we show how one can associate an Abelian group to every Abelian semigroup (in a way analogous to how one obtains \mathbb{Z} from \mathbb{N}).

Let $(S,+)$ be an Abelian semigroup. Define a relation \sim on $S \times S$ by $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ if there exists $z \in S$ with $x_{1}+y_{2}+z=x_{2}+y_{1}+z$.

1) Show that \sim is an equivalence relation on $S \times S$.

We write $G(S)$ for $(S \times S) / \sim$, and let $\langle x, y\rangle$ denote the equivalence class in $G(S)$ containing $(x, y) \in$ $S \times S$. The operation

$$
\left\langle x_{1}, y_{1}\right\rangle+\left\langle x_{2}, y_{2}\right\rangle=\left\langle x_{1}+x_{2}, y_{1}+y_{2}\right\rangle
$$

is well defined and turns $(G(S),+)$ into an Abelian group. Note that $-\langle x, y\rangle=\langle y, x\rangle$, and $\langle x, x\rangle=0$ for all $x, y \in S$. The group $G(S)$ is called the Grothendieck group of S.

Fix $y \in S$ and consider the map $\gamma_{S}: S \ni x \mapsto\langle x+y, y\rangle \in G(S)$.
2) Show that γ_{S} is independent of the choice of y,
3) Show that $G(S)=\left\{\gamma_{S}(x)-\gamma_{S}(y) \mid x, y \in S\right\}$,
4) Show that $\gamma_{S}(x)=\gamma_{S}(y)$ if and only if $x+z=y+z$ for some $z \in S$,
5) Show that γ_{S} is injective if and only if S has the cancellation property, namely whenever $x+z=$ $y+z$ for $x, y, z \in S$ one has $x=y$.

Exercise 4 (Whitehead lemma) Let \mathcal{A} be a unital C^{*}-algebra, and let u, v be unitary elements in \mathcal{A}. Let us also denote by \sim_{h} the homotopy equivalence in the set $\mathcal{U}_{2}(\mathcal{A})$ (the set of unitary 2×2 matrices with entries in $\mathcal{A})$. Then

$$
\left(\begin{array}{cc}
u & 0 \\
0 & v
\end{array}\right) \sim_{h}\left(\begin{array}{cc}
u v & 0 \\
0 & 1
\end{array}\right) \sim_{h}\left(\begin{array}{cc}
v u & 0 \\
0 & 1
\end{array}\right) \sim_{h}\left(\begin{array}{ll}
v & 0 \\
0 & u
\end{array}\right)
$$

In particular one has

$$
\left(\begin{array}{cc}
u & 0 \\
0 & u^{*}
\end{array}\right) \sim_{h}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

For the proof, one can first show that $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \sim_{h}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, and then use identities of the form:

$$
\left(\begin{array}{ll}
u & 0 \\
0 & v
\end{array}\right)=\left(\begin{array}{ll}
u & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
v & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

References

Master class lecture notes available on
http://www.math.nagoya-u.ac.jp/~richard/lecture_notes.html

Further reading

- R. Douglas, Banach algebra techniques in operator theory, Second edition, Graduate Texts in Mathematics 179, Springer-Verlag, New York, 1998.
- G. Murphy, C^{*}-algebras and operator theory, Academic Press, Inc., Boston, MA, 1990.
- H. Moriyoshi, T. Natsume, Operator algebras and geometry, Translations of Mathematical Monographs 237, American Mathematical Society, Providence, RI, 2008.
- M. Roerdam, F. Larsen, N. Laustsen, An introduction to K-theory for C^{*}-algebras, London Mathematical Society Student Texts 49, Cambridge University Press, Cambridge, 2000.

