seminar FisMat

FisMat Seminar, August 21, 15:45

Speaker: Marouane Assal. Pontificia Universidad Católica de Chile

Title: A double well problem for a system of Schrödinger operators with energy-level crossing

Place: Pontificia Universidad Católica, Facultad de Matemáticas, Campus San Joaquin, Sala 5

Abstract:
We study the existence and the asymptotic distribution of the eigenvalues of a 2*2 semiclassical system of coupled Schrödinger operators, in the case where the two electronic levels (potentials) cross at some real point and each of them admits a simple well. Considering energy levels above that of the crossing, we give the asymptotics of the eigenvalues close to such energies. In the case of symmetric wells, eigenvalues splitting occurs and we give a precise estimate of it.

seminar FisMat

FisMat Seminar, August 14, 15:45

Speaker: Julien Royer. Universidad de Toulouse

Title: Local energy decay for the periodic damped wave equation

Place: Pontificia Universidad Católica, Facultad de Matemáticas, Campus San Joaquin, Sala 5

Abstract:
In this talk, we will discuss the local (or global) energy decay for the wave equation with damping at infinity. We are in particular interested in the case of a periodic (or asymptotically periodic) setting. We will mainly describe the contribution of low frequencies and observe that it behaves like the solution of some heat equation. We will see how this emerges from the spectral analysis of the damped wave equation.

seminar FisMat

FisMat Seminar, July 24, 15:45

Speaker: Fabian Belmonte. Universidad Católica del Norte

Title: Canonical Quantization of Constants of Motion

Place: Pontificia Universidad Católica, Facultad de Matemáticas, Campus San Joaquin, Sala 5

Abstract:
It is well known that Weyl quantization does not intertwine the Poisson bracket of two functions with the commutator of the corresponding operators (Groenewold- van Hove’s no go theorem). The latter suggest that Weyl quantization does not preserve the constants of motion of every given Hamiltonian, however, there are very important examples where it does so. In this talk we are going to approach the following problems:
a) Is it possible to determine the Hamiltonians for which a given canonical quantization preserves its constants of motion? We will give an interesting criteria partially answering this question in terms of the Wigner transform. We will give some important examples as well.
b) Conversely, is it possible to construct a canonical quantization preserving the constants of motion of a prescribed Hamiltonian? Under certain conditions, we will show a construction of such quantization based in the structural analogy between the description of classical and quantum constants of motion.

Seminar Spectral Theory and PDE

Seminar Spectral Theory and PDE, June 27, 17:00

Speaker: Leonid Parnovski. University College London

Title: Floating mats and sloping beaches: spectral asymptotics of the Steklov problem on polygons.

Place: PUC Chile, Campus San Joaquin, Fac. Matematicas, Sala 2

Abstract:
I will discuss recent results (joint with M.Levitin, I.Polterovich and D.Sher) on the asymptotic behaviour of Steklov eigenvalues on polygons and other two-dimensional domains with corners. The answer is completely unexpected and depends on the arithmetic properties of the angles. 

Seminar Spectral Theory and PDE

Seminar Spectral Theory and PDE, June 6, 17:00

Expositor:  Horia Cornean, Aalborg University

Title:  Peierls’ substitution for low lying spectral energy windows 

Abstract: We consider a 2d periodic Schrödinger operator for which we assume that either the first Bloch eigenvalue remains isolated while its corresponding Riesz spectral projection family has a non-zero Chern number, or the first two Bloch eigenvalues have a conical crossing. The system is afterwards  perturbed by a weak magnetic field which slowly varies around a positive mean. Then we prove the appearance of a “Landau type” structure of spectral islands and gaps both at the bottom of the spectrum, and near the possible crossings.
This is joint (past and ongoing) work with B. Helffer (Nantes) and R. Purice (Bucharest).

http://www.mat.uc.cl/~graikov/seminar.html

seminar FisMat

FisMat Seminar, June 5, 15:45

Speaker: Horia Cornean. Aalborg University

Title: A Beals criterion for magnetic pseudo-differential operators proved with magnetic Gabor frames

Place: Pontificia Universidad Católica, Facultad de Matemáticas, Campus San Joaquin, Sala 5

Abstract:
First, we give a new proof for the Beals commutator criterion for non-magnetic Weyl pseudo-differential operators based on classical Gabor tight frames. Second, by introducing a modified ‘magnetic’ Gabor tight frame, we naturally derive the magnetic analogue of the Beals criterion originally considered by Iftimie-Mantoiu-Purice. This is joint work with Bernard Helffer (Nantes) and Radu Purice (Bucharest). https://doi.org/10.1080/03605302.2018.1499777

Seminar Spectral Theory and PDE

Seminar Spectral Theory and PDE, May 30, 17:00

Speaker: Dmitrii Shirokov. National Research University Higher School of Economics, Russia

Title: On Constant Solutions of Su(2) Yang-Mills Equations

Place: Pontificia Universidad Católica, Facultad de Matemáticas (Campus San Joaquin), Sala 2

Abstract:
We present all constant solutions of the Yang-Mills equations with SU(2) gauge symmetry for an arbitrary constant non-Abelian current in Euclidean space of arbitrary finite dimension. We use the singular value decomposion method and the method of two-sheeted covering of orthogonal group by spin group to do this. Using hyperbolic singular value decomposition, we solve the same problem in arbitrary pseudo-Euclidean space. The case of Minkowski space is discussed in details. Nonconstant solutions of the Yang-Mills equations are considered in the form of series of perturbation theory.

http://www.mat.uc.cl/~graikov/seminar.html 

seminar FisMat

FisMat Seminar, May 29, 15:45

Speaker: Andrés Fernando Reyes Lega. Universidad de los Andes (Colombia)

Title: Emergent Gauge Symmetries, Quantum Operations and Anomalies

Place: Pontificia Universidad Católica, Facultad de Matemáticas (campus San Joaquin), Sala 5

Abstract:
The Gelfand-Naimark-Segal (GNS) construction is a fundamental tool for the study of the representation theory of operator algebras. It also plays a prominent role in the algebraic approach to quantum field theory. In this talk I will discuss some examples of applications of the algebraic approach to quantum physics to systems with a finite number of degrees of freedom. I will illustrate how the GNS construction naturally leads to interesting connections between gauge symmetries, anomalies and quantum-information concepts like entanglement entropy and quantum operations.

Seminar Spectral Theory and PDE

Seminar Spectral Theory and PDE, May 16, 17:00

Frédéric Klopp. Institut de Mathématiques Jussieu – Paris Rive Gauche, Sorbonne
Title: Exponential decay for the 2 particle density matrix of disordered many-body fermions at zero and positive temperature.
Place: Pontificia Universidad Católica de Chile, Facultad de Matemáticas (campus San Joaquin), Sala 2
Abstract:
We will consider a simple model for interacting fermions in a random background at zero and positive temperature. At zero temperature, we prove exponential decay for the 2 particle density matrix of a ground state. At positive temperature we prove exponential decay for the 2 particle density matrix of the density operator in the grand canonical ensemble.
http://www.mat.uc.cl/~graikov/seminar.html

Announcement, conference

2nd JNMP Conference on Nonlinear Mathematical Physics: 2019

The 2nd JNMP Conference on Nonlinear Mathematical Physics: 2019 conference is held from May 26 till June 4, 2019 at the University of Santiago de Chile.
USACH – Centro de estudios de postgrado y educación continua 
(Center for postgraduate studies and continuing education) 
Piso 3, Av. Apoquindo 4499, Las Condes, Región Metropolitana, Santiago, Chile

Description

This conference is being organized for the Journal of Nonlinear Mathematical Physics (JNMP) community. We aim to bring together experts and young scientists in the area of Mathematical Physics that concern Nonlinear Problems in Physics and Mathematics. The main topic of the conference is centered around the scope of JNMP: continuous and discrete integrable systems including ultradiscrete systems, nonlinear differential- and difference equations, applications of Lie transformation groups and Lie algebras, nonlocal transformations and symmetries, differential-geometric aspects of integrable systems, classical and quantum groups, super geometry and super integrable systems.